IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

A Survey on Deep Reinforcement Learning
for Data Processing and Analytics

, Can Cui
, and Meihui Zhang

Qingpeng Cai
Zhongle Xie

, Yiyuan Xiong*', Wei Wang ",
, Member, IEEE

Abstract—Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics
where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their
effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in
many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms.

Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and
analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on
database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and
indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language
processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data

processing and analytics.

Index Terms—Deep reinforcement learning, data processing and analytics, database, system optimization

1 INTRODUCTION

N the age of big data, data processing and analytics are fun-

damental, ubiquitous, and crucial to many organizations
which undertake a digitalization journey to improve and
transform their businesses and operations. Data analytics
typically entails other key operations such as data acquisi-
tion, data cleansing, data integration, modeling, etc., before
insights could be extracted. Big data can unleash significant
value creation across many sectors such as healthcare and
retail [1]. However, the complexity of data (e.g., high vol-
ume, high velocity, and high variety) presents many chal-
lenges in data analytics and hence renders the difficulty in
drawing meaningful insights. To tackle the challenge and
facilitate the data processing and analytics efficiently and
effectively, a large number of algorithms and techniques
have been designed and numerous learning systems have

o Qingpeng Cai, Can Cui, Yiyuan Xiong, and Wei Wang are with the
National University of Singapore, Singapore 119077.

E-mail: {gingpeng, cuican, yiyuan, wangwei}@comp.nus.edu.sg.

o Zhongle Xie is with the Zhejiang University and Institute of Computing
Innovation, Zhejiang University, Hangzhou, Zhejiang 310027, China.
E-mail: xiezl@zju.edu.cn.

o Meihui Zhang is with the Beijing Institute of Techonology, Beijing
100811, China. E-mail: meihui_zhang@bit.edu.cn.

Manuscript received 5 Aug. 2021; revised 4 Feb. 2022; accepted 13 Feb. 2022.
Date of publication 1 Mar. 2022; date of current version 3 Apr. 2023.

This work was supported by National Key Research and Development Pro-
gram of China under Grant 2020YFB1708100. The work of Qingpeng Cai,
Can Cui and Yiyuan Xiong’s was supported by the Singapore Ministry of
Education Academic Research Fund Tier 3 under MOEs official Grant
MOE2017-T3-1-007.

(Corresponding author: Meihui Zhang.)

Recommended for acceptance by L. Chen.

Digital Object Identifier no. 10.1109/TKDE.2022.3155196

also been developed by researchers and practitioners such as
Spark MLIib [2], and Rafiki [3].

To support fast data processing and accurate data analyt-
ics, a huge number of algorithms rely on rules that are devel-
oped based on human knowledge and experience. For
example, shortest-job-first is a scheduling algorithm that
chooses the job with the smallest execution time for the next
execution. However, without fully exploiting characteristics
of the workload, it can achieve inferior performance com-
pared to a learning-based scheduling algorithm [4]. Another
example is packet classification in computer networking
which matches a packet to a rule from a set of rules. One solu-
tion is to construct the decision tree using hand-tuned heuris-
tics for classification. Specifically, the heuristics are designed
for a particular set of rules and thus may not work well for
other workloads with different characteristics [5]. We observe
three limitations of existing algorithms [6], [7]. First, the algo-
rithms are suboptimal. Useful information such as data distri-
bution could be overlooked or not fully exploited by the
rules. Second, the algorithm lacks adaptivity. Algorithms
designed for a specific workload cannot perform well in
another different workload. Third, the algorithm design is a
time-consuming process. Developers have to spend much
time trying a lot of rules to find one that empirically works.

Learning-based algorithms have also been studied for
data processing and analytics. Two types of learning meth-
ods are often used: supervised learning and reinforcement
learning. They achieve better performance by direct optimi-
zation of the performance objective. Supervised learning typ-
ically requires a rich set of high-quality labeled training data,
which could be hard and challenging to acquire. For exam-
ple, configuration tuning is important to optimize the overall
performance of a database management system (DBMS) [8].
There could be hundreds of tuning knobs that are correlated

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-3763-4686
https://orcid.org/0000-0002-3763-4686
https://orcid.org/0000-0002-3763-4686
https://orcid.org/0000-0002-3763-4686
https://orcid.org/0000-0002-3763-4686
https://orcid.org/0000-0002-7571-2876
https://orcid.org/0000-0002-7571-2876
https://orcid.org/0000-0002-7571-2876
https://orcid.org/0000-0002-7571-2876
https://orcid.org/0000-0002-7571-2876
https://orcid.org/0000-0001-8477-3526
https://orcid.org/0000-0001-8477-3526
https://orcid.org/0000-0001-8477-3526
https://orcid.org/0000-0001-8477-3526
https://orcid.org/0000-0001-8477-3526
https://orcid.org/0000-0001-5367-7056
https://orcid.org/0000-0001-5367-7056
https://orcid.org/0000-0001-5367-7056
https://orcid.org/0000-0001-5367-7056
https://orcid.org/0000-0001-5367-7056
https://orcid.org/0000-0002-2924-6974
https://orcid.org/0000-0002-2924-6974
https://orcid.org/0000-0002-2924-6974
https://orcid.org/0000-0002-2924-6974
https://orcid.org/0000-0002-2924-6974
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
mailto:qingpeng@comp.nus.edu.sg
mailto:cuican@comp.nus.edu.sg
mailto:yiyuan@comp.nus.edu.sg
mailto:wangwei@comp.nus.edu.sg
mailto:xiezl@zju.edu.cn
mailto:meihui_zhang@bit.edu.cn

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS

SQL Query: SELECT * FROM A, B, C, D
WHERE A.age = B.age AND A.age = C.age AND ...
1

¥

State s: Featurization (‘ A | B ‘ ¢ ‘ D ‘}
A.age, B.age, C.age,

Agent (DRL Optimizer)

(v ‘s|,s)d uomsuesy T

Action Set

i i

complete join ordering plan

Fig. 1. The Workflow of DRL for Query Optimization. A, B, C and D are
four tables.

in discrete and continuous space. Furthermore, diverse data-
base instances, query workloads, hardware characteristics
render data collection infeasible, especially in the cloud envi-
ronment. Compared to supervised learning, reinforcement
learning shows good performance because it adopts a trial-
and-error search and requires fewer training samples to find
good configuration for cloud databases [9]. Another specific
example would be query optimization in query processing.
Database system optimizers are tasked to find the best execu-
tion plan for a query to reduce its query cost. Traditional
optimizers typically enumerate many candidate plans and
use a cost model to find the plan with minimal cost. The opti-
mization process could be slow and inaccurate [10]. Without
relying on an inaccurate cost model, deep reinforcement
learning (DRL) methods improve the execution plan (e.g.,
changing the table join orders) by interacting with the data-
base [11], [12]. Fig. 1 provides a typical workflow for query
optimization using DRL. When the query is sent to the agent
(i.e., DRL optimizer), it produces a state vector via conduct-
ing featurization on essential information, such as the
accessed relations and tables. Taking the state as the input,
the agent employs neural networks to produce the probabil-
ity distribution of an action set, where the action set could
contain all possible join operations as potential actions. Each
action denotes a partial join plan on a pair of tables, and the
state will be updated once an action is taken. After taking
possible actions, a complete plan is generated, which is then
executed by a DBMS to get the reward. In this query optimi-
zation problem, the reward can be calculated by the real
latency. During the training process with the reward signal,
the agent can improve the policy and produce a better join
ordering with a higher reward (i.e., less latency).
Reinforcement learning (RL) [13] focuses on learning to
make intelligent actions in an environment. The RL algo-
rithm works on the basis of exploration and exploitation to
improve itself with feedback from the environment. In the
past decades, RL has achieved tremendous improvements

4447

in both theoretical and technical aspects [13], [14]. Notably,
DRL incorporates deep learning (DL) techniques to handle
complex unstructured data and has been designed to learn
from historical data and self-exploration to solve notoriously
hard and large-scale problems (e.g., AlphaGo [15]). In recent
years, researchers from different communities have pro-
posed DRL solutions to address issues in data processing
and analytics [4], [16], [17]. We categorize existing works
using DRL from two perspectives: system and application.
From the system’s perspective, we focus on fundamental
research topics ranging from general ones, such as schedul-
ing, to system-specific ones, such as query optimization in
databases. We shall also emphasize how it is formulated in
the Markov Decision Process and discuss how the problem
can be solved by DRL more effectively compared to tradi-
tional methods. Many techniques such as sampling and sim-
ulation are adopted to improve DRL training efficiency
because workload execution and data collection in the real
system could be time-consuming [18]. From the application’s
perspective, we shall cover various key applications in both
data processing and data analytics to provide a comprehen-
sive understanding of the DRL’s usability and adaptivity.
Many domains are transformed by the adoption of DRL,
which helps to learn domain-specific knowledge about the
applications.

In this survey, we aim at providing a broad and system-
atic review of recent advancements in employing DRL in
solving data systems, data processing and analytics issues.
In Section 2, we introduce the key concepts, theories, and
techniques in RL to lay the foundations. To gain a deeper
understanding of DRL, readers could refer to the recently
published book [19], which covers selected DRL research
topics and applications with detailed illustrations. In Sec-
tion 3, we review the latest important research works on
using DRL for system optimization to support data process-
ing and analytics. We cover fundamental topics such as
data organization, scheduling, system tuning, index, query
optimization, and cache management. In Section 4, we dis-
cuss using DRL for applications in data processing and ana-
lytics ranging from data preparation, natural language
interaction to various real-world applications such as
healthcare, fintech, E-commerce, etc. In Section 5, we high-
light various open challenges and potential research prob-
lems. We conclude in Section 6. This survey focuses on
recent advancements in exploring RL for data processing
and analytics that spurs great interest, especially in the data-
base and data mining community. There are survey papers
discussing DRL for other domains. We refer readers to the
survey of DRL for healthcare in [20], communications and
networking in [21], and RL explainability in [22]. Another
work [23] discusses how deep learning can be used to opti-
mize database system design, and vice versa. In this paper,
we use “DRL” and "RL” interchangeably.

2 THEORETICAL FOUNDATION AND ALGORITHMS
OF REINFORCEMENT LEARNING

RL is targeted to solve the sequential decision making prob-
lem and the goal is to take actions with maximum expected
rewards. In detail, the agent follows a policy to make a
series of decisions (i.e., taking actions) in different states of

4448

the environment, and the sequence of the states and the
actions form a trajectory. To estimate whether the policy is
good or not, each decision under the policy will be evalu-
ated by the accumulated rewards through the trajectory.
After evaluating the policy from the trajectories, the agent
next improves the policy by increasing the probabilities of
making decisions with greater expected rewards. By repeat-
ing these steps, the agent can improve the policy through
trial-and-error until the policy reaches the optimal, and
such a sequential decision-making process is modeled via
Markov Decision Process (MDP).

2.1 Markov Decision Process

Mathematically, MDP, shown in Fig. 1, is a stochastic con-
trol process M defined by a tuple with 5 elements, M =
(S, A, R, P,y), which are explained as follows.

e State S: S is the space for states that denote different
situations in the environment and s; € S denotes the
state of the situation at the time ¢.

e Action A: Ais the space for actions that the agent can
take; the actions can either be discrete or continuous,
and a; € A denotes the action taken at the time ¢.

e Reward function R(s¢, a;): It denotes the immediate
reward of the action a; taken under the state s;.

e Transition function P(sy1 =5|si=s,a4=a) It
denotes the probability of transition to the state s’ at
the time ¢ + 1 given the current state s and the taken
action a at the time ¢.

e Discount factor y € [0, 1]: The total rewards of a cer-
tain action consist of both immediate rewards and
future rewards, and the y quantifies how much
importance we give for future rewards.

We take the query optimization problem demonstrated
in Fig. 1 to help explain the five components of the MDP. In
this example, the state is expressed as a state vector, which
summarizes the information of relations and tables that are
assessed by the query ¢. In each state, the RL agent produces
a probability distribution over all potential actions where
each action denotes a partial join plan on a pair of tables.
After repeating these two processes, it reaches a terminal
state where the final join ordering is generated for an agent
to execute, and all actions’ target rewards are measured by
the actual performance (i.e., latency) or a cost model. As for
the transition function, the transitions of the states are
always deterministic in both this problem and most of the
other DB problems.

In RL, we aim to train the agent with a good policy 7 that
is a mapping function from state to action. Through the pol-
icy, the agent can take a series of actions that will result in
continuous changes in the states, and the sequence of the
states and the actions following the policy 7 form a trajectory
7 = (8o, ag, S1, a1, ...). From each 7, we can evaluate the effect
of each action by the accumulated rewards G, and it consists
of the immediate reward of this action and the discounted
rewards of its following actions in the trajectory. The total
result G for the action a, is as follows: G(t) = >_,_, ¥'r, where
y quantifies how much importance we give for future
rewards. With a bigger y, the RL agent will be more likely to
take any action that may have a less immediate reward at the
current time but has a greater future reward in expectation.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

RL continuously evaluates the policy = and improves
it until it reaches the optimal policy 7* = arg max ;. G(t)
where the agent always takes actions that maximize the
expected return. To evaluate the policy 7, RL algorithms esti-
mate how good or bad it is for a state and a state-action pair
by the function V and function Q respectively. Both of these
two value functions are calculated according to the dis-
counted return G in expectation which can be written as

V*(s) = Eror[G(7)|50 = 8] (1)
Q" (s,a) = Err[G(7)|50 = 5,00 = a] (2)

These two value functions have a close association where
the V" (s,) is the expectation of the function Q of all possible
actions under the state s; according to the policy =, and the
Q" (s, at) is the combination of the immediate reward of the
action a; and the expectation of all possible states’ values
after taking the action a; under the state s,. Hence, we have

Vi(s) = > m(a|s)Q"(s,a) (©)
acA
Q"(s,a) = R(s,a) +y Y _ P(s|s,a)V"(s) 4)
s'eS

Given a policy 7, we can evaluate its value functions by
Bellman equations [13] which utilize the recursive relation-
ships of these value functions. Formally, Bellman equations
deduce the relationships between a given state (i.e., function
V) or a given state-action pair (i.e., function Q) and its suc-
cessors which can be written as

V(s) =Y mlals)[R(s,a) + ¥ > _P(s|s,a)V"(s)] ®)

a€A s'eS
Q(s,a) =Y _P(ss,a)[R(s,a) + 7) 7(d|s)Q7(s',d)] (6)
s'esS a'eA

By iterating the Bellman equations, we can easily obtain
the value functions for a policy, and to compare policies, we
define that the policy = is better than n’ if the function V
according to the m is no less than the function V according
to the 7' for all states, that is V"(s) > V™ (s), Vs. It has been
proven in [13] that the existence of the optimal policy =* is
guaranteed in the MDP problem, where V*(s) = max,V"(s)
and Q*(s) = max,;Q”"(s). These two functions are defined as
the optimal function V and the optimal function Q. We can
obtain the optimal policy 7* by maximizing over the Q*(x)
which can be written as:

7*(als) = argmaxQ*(s,a))

To improve the policy, we apply the Bellman optimality equa-
tions [13] to update value functions by taking the action with
maximum value instead of trying all possible actions. To facil-
itate the optimization of the policy, many RL techniques are
proposed from different perspectives, and Fig. 2 provides a
diagram outlining the broad categorization of these techni-
ques, illustrating how these techniques can be applied.

2.2 Basic Techniques

Based on the representation of MDP elements, basic techni-
ques can be categorized into two classes: model-based method

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS

4449

" Dynamic Programming, Alpha Zero, ...

Value-based

Policy-based

DS i ’—(:: Data Utilization
ata Samplin
ping Data Correlation

SARSA (On-policy)
Q-lcarning (Off-policy)

Deep Q-learning —* DDPG

Policy Gradient — Actor-Critic

Policy Exploration
Policy Representation

Policy Optimization

-~
Model-based
Methods
Basic
Techniques
Model-free
Methods
Advanced
Techniques
Model Efficiency

Multiple Reward

Unknown Reward

L

Value Representation

Fig. 2. Broad categorization of RL techniques.

and model-free method. The main difference is whether the
agent has access to model the environment, i.e., whether the
agent knows the transition function and the reward function.
These two functions are already known in the model-based
method where Dynamic Programming (DP) [24] and Alpha-
Zero [14] are the classical methods which have achieved sig-
nificant results in numerous applications. In these methods,
agents are allowed to think ahead and plan future actions
with known effects on the environment. Besides, an agent
can learn the optimal policy from the planned experience
which results in high sample efficiency.

In many RL problems, the reward and the transition
function are typically unknown due to the complicated
environment and its intricate inherent mechanism. For
example, as illustrated in Fig. 1, we are unable to obtain the
actual latency as the reward in the joint query optimization
example. Besides, in the stochastic job scheduling problem
[25], it is also impossible to directly model the transition
function because of the randomness of the job arrivals in the
practical scenarios. Hence, in these problems, agents usually
employ model-free methods that can purely learn the policy
from the experience gained during the interaction with the
environment. Model-free methods can mainly be classified
into two categories, namely the value-based method and the
policy-based method. In the value-based method, the RL
algorithm learns the optimal policy by maximizing the
value functions. There are two main approaches in estimat-
ing the value functions that are Mento-Carlo (MC) methods
and Temporal difference (TD) methods. MC methods calculate
the V(s) by directly applying its definition, that is Equa-
tion (1). MC methods can directly update the value func-
tions once they get a new trajectory t as follows:

V7(s) «— V™(s) + a(Grn(t|80 = 8) — V7(3)) (€©)

where o € [0, 1) denotes the learning rate which controls the
rate of updating the policy with new experiences. However,
it has an obvious drawback that a complete trajectory
requires the agent to reach a terminal state, while it is not

practical in some applications, such as online systems. Dif-
ferent from MC methods, the TD method builds on the
recursive relationship of value functions, and hence, can
learn from the incomplete trajectory. Mathematically, the
update of TD methods can be written as

V() < V'(s) + a(R(s,a) + yV7(s') = V7(5)))

However, there is bias when estimating the function V with
TD methods because they learn from the recursive relation-
ship. To reduce the bias, TD methods can extend the length
of the incomplete trajectories and update the function V by
thinking more steps ahead, which is called n-steps TD meth-
ods. As n grows to the length of whole trajectories, MC meth-
ods can be regarded as a special case of TD methods where
function V is an unbiased estimate. On the other side of the
coin, as the length n increases, the variance of the trajectory
also increases. In addition to the above consideration, TD-
based methods are more efficient and require less storage
and computation, thus they are more popular among RL
algorithms.

In value-based methods, we can obtain the optimal pol-
icy by acting greedily via Equation (7). The update of the
function Q with TD methods is similar to the update of
the function V, and is as follows: Q"(s,a) < Q"(s,a) +
a(R(s,a) + yQ”/(s/,a’) — Q"(s,a)) where the agent follows
the policy 7 to take actions and follows the policy 7’ to max-
imize the function Q. If the two policies are the same, that is
7’ =m, we call such RL algorithms the on-policy methods
where the SARSA [26] is the representative method. In addi-
tion, other policies can also be used in 7. For example, in
Q-learning [27], the agent applies the greedy policy and
updates the function Q with the maximum value in its suc-
cessor. Its update formula can be written as: Q"(s,a) <
Q" (s,a) + a(R(s,a) + ymaxy Q" (s',a') — Q" (s, a)). Both
value-based methods can work well without the model of
the environment, and Q-learning directly learns the optimal
policy, whilst SARSA learns a near-optimal policy during
exploring. Theoretically, Q-learning should converge quicker

4450

than SARSA, but its generated samples have a high variance
which may suffer from the problems of converging.

In RL, storage and computation costs are very high when
there is a huge number of states or actions. To overcome this
problem, DRL, as a branch of RL, adopts Deep Neural Net-
work (DNN) to replace tabular representations with neural
networks. For function V, DNN takes the state s as input and
outputs its state value Vy(s) =~ V" (s) where the 6 denotes the
parameter in the DNN. When comes to function Q, It takes
the combination of the state s and the action a as input and
outputs the value of the state-action pair Qy(s,a) ~ Q" (s, a),
As for the neural networks, we can optimize them by apply-
ing the techniques that are widely used in deep learning
(e.g., gradient descent). Deep Q-learning network (DQN) [28],
as a representative method in DRL, combines the DNN with
Q-learning and its loss function is as follows:

Ly = Ep|(R(s,0) + ymax Qu(s,a") = Qu(s,a)] (10)
where D denotes the experience replay which accumulates the
generated samples and can stabilize the training process.

Policy-based methods are another branch of the model-
free RL algorithm that have a clear representation of the pol-
icy n(als), and they can tackle several challenges that are
encountered in value-based methods. For example, when
the action space is continuous, value-based methods need
to discretize the action which could increase the dimension-
ality of the problem, and memory and computation con-
sumption. Value-based methods learn a deterministic
policy that generates the action given a state through an
optimal function Q (i.e., 7(s) = a). However, for policy-
based methods, they can learn a stochastic policy (i.e.,
mo(ails) = pi,y_; pi =1) as the optimal policy, where p;
denotes the probability of taking the action a; given a state
s, and 0 denotes the parameters where neural networks can
be used to approximate the policy. Policy Gradient [29]
method is one of the main policy-based methods which can
tackle the aforementioned challenges. Its goal is to optimize
the parameters 6 by using the gradient ascent method, and
the target can be denoted in a generalized expression

VI (6) = Eoer, [R(1) V08, (a8)] a1
The specific proof process can refer to [13]. Sampling via the
MC methods, we will get the entire trajectories to improve
the policy for the policy-based methods.

After training, the action with higher rewards in expecta-
tion will have a higher probability to be chosen and vice
versa. As for the continuous action, The optimal policy
learned from the Policy Gradient is stochastic which still
needs to be sampled to get the action. However, the stochas-
tic policy still requires lots of samples to train the model
when the search space is huge. Deterministic Policy Gradient
(DPG) [30], as an extension of the Policy Gradient, over-
comes this problem by using a stochastic policy to perform
sampling while applying deterministic policy to output the
action which demands relatively fewer samples.

Both value-based methods and policy-based methods
have their strengths and weaknesses, but they are not contra-
dictory to each other. Actor-Critic (AC) method, as the inte-
gration of both methods, divides the model into two parts:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

actor and critic. The actor part selects the action based on the
parameterized policy and the critic part concentrates on
evaluating the value functions. Different from previous
approaches, AC evaluates the advantage function A" (s, a) =
9" (s,a) — V*(s) which reflects the relative advantage of a
certain action a to the average value of all actions. The intro-
duction of the value functions also allows AC to update by
step through the TD method, and the incorporation of the
policy-based methods makes AC be suitable for continuous
actions. However, the combination of the two methods also
makes the AC method more difficult to converge. Moreover,
Deep Deterministic Policy Gradient (DDPG) [31], as an exten-
sion of the AC, absorbs the advanced techniques from the
DQN and the DPG which enables DDPG to learn the policy
more efficiently.

In all the above-mentioned methods, there always exists a
trade-off between exploring the unknown situation and
exploiting with learned knowledge. On the one hand,
exploiting the learned knowledge can help the model con-
verge quicker, but it always leads the model into a local opti-
mal rather than a globally optimal. On the other hand,
exploring unknown situations can find some new and better
solutions, but always being in the exploring process causes
the model hard to converge. To balance these two processes,
researchers have been devoting much energy to finding a
good heuristics strategy, such as € — greedy strategy, Boltz-
mann exploration (Softmax exploration), upper confidence
bound (UCB) algorithm [32], Thompson sampling [33], and
so on. Here, we consider the € — greedy, a widely used explo-
ration strategy, as an example. € — greedy typically selects
the action with the maximal Q value to exploit the learned
experience while occasionally selecting an action evenly at
random to explore unknown cases. € — greedy exploration
strategy with m actions can be denoted as follow:

a* = argmax,c 4 9(s,a),

atals) = { T =

e/m
(12)

€ € [0,1) is an exploration factor. The agent is more likely to
select the action at random when the ¢ is closer to 1, and the
e will be continuously reduced during the training process.

2.3 Advanced Techniques

This section mainly discusses some advanced techniques in
RL which focus on efficiently using the limited samples and
building sophisticated model structures for better represen-
tation and optimization. According to the different improve-
ments, they can be broadly classified into two parts: data
sampling and model efficiency.

2.3.1 Data Sampling

Data sampling is one of the most important concerns in train-
ing the DRL in data processing and analytics. In most appli-
cations, the sample generation process costs a great amount
of time and computation resources. For example, a sample
may refer to an execution run for workload and repartition-
ing for the database, which can take about 40 minutes [18].
Hence, to train the model with limited samples, we need to
increase data utilization and reduce data correlation.

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS

Data Utilization. Most DRL algorithms train the optimal
policy and sample data at the same time. Instead of drop-
ping samples after being trained, experience replay [34] accu-
mulates the samples in a big table where samples are
randomly selected during the learning phase. With this
mechanism, samples will have a higher utilization rate and
a lower variance, and hence, it can stabilize the training pro-
cess and accelerate the training convergence. Samples after
several iterations may differ from the current policy, and
hence, Growing-batch [35] can continuously refresh the table
and replace these outdated samples. In addition, samples
that are far away from the current policy should be paid
more attention and Prioritized Experience Replay [36] uses TD
error as the priority to measure the sample importance, and
hence, focus more on learning the samples with high errors.
In a nutshell, with the experience replay, DRL cannot only
stable the learning phase but also efficiently optimize the
policy with fewer samples.

Data Correlation. Strong correlation of training data is
another concern that may lead the agent to learn a sub-opti-
mal solution instead of the globally optimal one. Apart from
the experience replay, the mechanism of the distributed envi-
ronments is another research direction to alleviate this prob-
lem. For example, the asynchronous advantage actor-critic
(A3Q) [37] and Distributed PPO (DPPO) [38] apply multi-
threads to build multiple individual environments where
multiple agents take actions in parallel, and the update is cal-
culated periodically and separately which can accelerate the
sampling process and reduce the data correlation.

2.3.2 Model Efficiency

RL model with better efficiency is the major driving force of
the development of RL, and there are many researchers
improving it from three major aspects, namely policy, reward
function, and value function.

Policy. The policy-related techniques focus on stably and
effectively learning a comprehensive policy, and the
advanced techniques to efficiently learn the policy can be
classified into three parts in detail, which are policy explora-
tion, policy representation, and policy optimization.

a) Policy exploration: Its target is to explore as many actions
as possible during the training process in case the policy will
be trapped into the local optimal. For example, entropy regu-
larisation [37] adds the entropy of the actions’ probabilities
into the loss item which can sufficiently explore the actions.
Besides, adding noise to the action is another research direc-
tion to increase the randomness into policy exploration. The
DDPG applies an Ornstein—Uhlenbeck process [39] to gener-
ate temporal noise A which are directly injected into policy.
Noisy-Net [40] incorporates the noise into the parameters of
neural networks which is easy to implement, and it shows a
better performance than the ¢ — greedy and entropy regular-
isation methods. Further, Plappert et al. [41] investigate an
effective way to combine the parameter space noise to enrich
the exploratory behaviors which can benefit both on-policy
methods and off-policy methods.

b) Policy representation: The states in some RL problems
are in a huge dimension which causes challenges during the
training. To approximate a better policy, a branch of DRL
models improve the policy representation by absorbing

4451

convolutional neural networks (CNN) into DQN to analyze
the data, such as Dueling DQN [42], DRQN [43], and so on.
In addition, DROQN also incorporates the LSTM structure to
increase the capacity of the policy which is able to capture
the temporal information, such as speed, direction.

) Policy optimization: The update of the value functions
following the Equation (5) and 6 tends to overestimate the
value functions and introduce a bias because they learn esti-
mates from the estimates. Mnih et al. [44] separate the two
estimation process by using two same Q-networks which
can reduce the correlation of two estimation processes and
hence, stabilize the course of training. However, the action
with the maximum Q-value may differ between two Q-net-
works which will be hard for convergence. and Double DQN
(DDQN) [45] alleviate the issue by disaggregating the step
of selecting the action and calculating the max Q-value.

When we apply the policy-based RL methods, the learn-
ing rate of the policy plays an essential role in achieving
superior performance. A higher learning rate can always
maximize the improvement on a policy by step, but it also
causes the instability of the learning phase. Hence, The Trust
Region Policy Optimization (TRPO) [46] builds constraints on
the old policy and new policy via KL divergence to control
the change of the policy in an acceptable range. With this
constraint, TRPO can iteratively optimize the policy via a
surrogate objective function which can monotonically
improve policies. However, the design of the KL constraint
makes it hard to be trained, and Proximal Policy Optimization
(PPO) [47] simplifies the constraint through two ways: add-
ing it into the objective function, designing a clipping func-
tion to control the update rate. Empirically, PPO methods
are much simpler to implement and are able to perform at
least as well as TRPO.

Reward. Reward function as one of the key components in
the MDP plays an essential role in the RL. In some specific
problems, the agent has to achieve multiple goals which may
have some relationships. For example, the robot can only get
out through the door only if it has already found the key. To
tackle this challenge, Hierarchical DQN [48] proposes two lev-
els of hierarchical RL (HRL) models to repeatedly select a
new goal and achieve the chosen goal. However, there is a
limitation that the goal needs to be manually predefined
which may be unknown or unmeasurable in some environ-
ments, such as the market and the effect of a drug. To over-
come it, Inverse RL (IRL) [49] learns the rewards function
from the given experts’ demonstrations (i.e., the handcraft
trajectories), but the agent in IRL can only prioritize the
entire trajectories over others. It will cause a shift when the
agent comes to a state that never appears before, and Genera-
tive Adversarial Imitation Learning (GAIL) [50], as an imitation
learning algorithm, applies adversarial training methods to
generate fake samples and is able to learn the expert’s policy
explicitly and directly.

Value. As we have mentioned earlier, the tabular repre-
sentation of the value functions has several limitations
which can be alleviated via DRL. Different from directly
taking the state-action pair as the input to calculate the Q-
function, Dueling DQN [42] estimates its value by approxi-
mating two separate parts that are the state-values and the
advantage values, and hence, can distinguish whether the
value is brought by the state or the action.

4452 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023
TABLE 1
Representative Works Using DRL for Data System Optimizations
Domain Work Algorithm D(State) D(Action) DRL-based Approach Open Source
Data Analytical system data PPO 10-100 100-1000 Exploit workload patterns NO
organization partition[16] and Generate the tree
Database horizontal partition [18] ~ DQN 100 10 Navigate the partition NO
search efficiently
UDF-centric workload data A3C 10 1-10 Exploit the features of YES
partition [54] partition and search
Time series data compression [55] PG 100 10 Search parameters NO
interactively
Scheduling Distributed job processing [4] PG 100 10 Exploit the job YES
dependencies and learn
schedule decision
Distributed stream data [56] DDPG 100 10-100 Learn schedule decision NO
Tuning Database configuration [9] [8] DDPG 100 10 Search configuration YES
parameters interactively
Index Index Selection [57] CEM 100 10 Search the index NO
interactively
R-tree construction [58] DON 10-100 10 Learn to generate the tree NO
Query Optimization Join order selection PG, DQN, ... 10-100 1-10 Learn to decide the join Only [60]
[11], [12], [59], [60] order
Cache Management View Materialization [61] DQN 100 10 Model the problem as IIP NO
and solve

D(X) denotes the approximate dimension of X space.

The aforementioned advanced algorithms and techniques
improve and enhance the DRL from different perspectives,
which makes DRL-based algorithms be a promising way to
improve data processing and analytics. We observe that
problems with the following characteristics may be amena-
ble to DRL-based optimization. First, problems are incredi-
bly complex and difficult. The system and application
involve a complicated operational environment (e.g., large-
scale, high-dimensional states) and internal implementation
mechanisms, which is hard to construct a white-box model
accurately. DRL can process complex data and learn from
experience generated from interacting, which is naturally
suitable for data processing and analytics where many kinds
of data exist and are processed frequently. Second, the opti-
mization objectives can be represented and calculated easily
as the reward because the RL agent improves itself towards
maximizing the rewards and rewards could be computed a
lot of times during training. Third, the environment can be
well described as MDP. DRL has been shown to solve MDP
with theoretical guarantees and empirical results. Thus,
problems involving sequential decision making such as
planning, scheduling, structure generation (e.g., tree, graph),
and searching could be expressed as MDP and a good fit for
DRL. Fourth, collecting required labels of data massively is
hard. Compared to supervised learning, DRL can utilize
data efficiently to gain good performance.

3 DATA SYSTEM OPTIMIZATIONS

DRL learns knowledge about the system by interacting with
it and optimizes the system. In this section, we focus on sev-
eral fundamental aspects with regards to system optimiza-
tion in data processing and analytics including data
organization, scheduling, tuning, indexing, query optimiza-
tion, and cache management. We discuss how each problem
is formulated in MDP by defining three key elements (action,

state, and reward) in the system and solved by DRL. Gener-
ally, the states are defined by some key characteristics of the
system. The actions are possible decisions (e.g., system config-
uration), that affect the system performance and the reward is
calculated based on the performance metrics (e.g., through-
put, latency). Table 1 presents a summary of representative
works and the estimated dimension ranges on the state and
action space of each work are added as signals on the DRL
training difficulty. As a comparison, OpenAl Five [51], a
Dota-playing Al, observes the state as 20,000 numbers repre-
senting useful game information and about 1,000 valid actions
(like ordering a hero to move to a location) for per hero. Dota
is a real-time strategy game between two teams of five players
where each player controls a character called a “hero”.

3.1 Data Organization
3.1.1 Data Partitioning

Effective data partitioning strategy is essential to accelerate
data processing and analytics by skipping irrelevant data
for a given query. It is challenging as many factors need to
be considered, including the workload and data characteris-
tics, hardware profiles, and system implementation.

In data analytics systems, data is split into blocks in main
memory or secondary storage, which are accessed by rele-
vant queries. A query may fetch many blocks redundantly
and, therefore, an effective block layout avoids reading
unnecessary data and reduces the number of block accesses,
thereby improving the system performance. Yang et al. [16]
propose a framework called the qd-tree that partitions data
into blocks using DRL over the analytical workload. The
qd-tree resembles the classic k-d tree and describes the par-
tition of multi-dimensional data space where each internal
node splits data using a particular predicate and represents
a subspace. The data in the leaf node is assigned to the same
block. In the MDP, each state is a node representing the

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS

subspace of the whole data and featured as the concatena-
tion of range and category predicates. After the agent takes
an action to generate two child nodes, two new states will
be produced and explored later. The available action set is
the predicates parsed from workload queries. The reward is
computed by the normalized number of skipped blocks
over all queries. They do not execute queries and a sam-
pling technique is used to estimate the reward efficiently.
The formulation of using DRL to learn a tree is similar to
NeuroCuts [5] that learns a tree for packet classification.
However, the qd-tree may not support a complex workload
containing user-defined functions (UDFs) queries.
Horizontal partitioning in the database chooses attributes
of large tables and splits them across multiple machines to
improve the performance of analytical workloads. The
design relies on either the experience of database adminis-
trators (DBAs) or cost models that are often inaccurate [10]
to predict the runtime for different partitions. Data collec-
tion is too challenging and costly to train the accurate super-
vised learning model in the cloud environment. Hilprecht
et al. [18] learn to partition using DRL on analytical work-
loads in cloud databases, on the fact that DRL is able to effi-
ciently navigate the partition search and requires less
training data. In the MDP, the state consists of two parts.
The database part encodes whether a table is replicated, an
attribute is used for partitioning, and which tables are co-
partitioned. The workload part incorporates normalized fre-
quencies of representative queries. Supported actions are:
partitioning a table using an attribute, replicating a table,
and changing tables co-partition. The reward is the negative
of the runtime for the workload. One challenge is that the
cost of database partitioning is high during training. To alle-
viate the problem, the agent is trained in the simulation
environment and is further refined in the real environment
by estimating the rewards using sampling. One limitation is
that it may not support new queries well because only the
frequency features of queries are considered. Durand et al.
in [52], [53] utilize DRL to improve vertical partitioning that
optimizes the physical table layout. They show that the
DON algorithm can easily work for a single workload with
one table but is hard to generalize to random workloads.
For UDFs analytics workloads on unstructured data, par-
titioning is more challenging where UDFs could express
complex computations and functional dependency is
unavailable in the unstructured data. Zou et al. [54] propose
the Lachesis system to provide automatic partitioning for
non-relational data analytics. Lachesis translates UDFs to
graph-based intermediate representations (IR) and identifies
partition candidates based on the subgraph of IR as a two-
terminal graph. Lachesis adopts DRL to learn to choose the
optimal candidate. The state incorporates features for each
partition extracted from historical workflows: frequency, the
execution interval, time of the most recent run, complexity,
selectivity, key distribution, number, and size of co-partition.
In addition, the state also incorporates other features such as
hardware configurations. The action is to select one partition
candidate. The reward is the throughput speedup compared
to the average throughput of the historical executions of
applications. To reduce the training time, the reward is
derived from historical latency statistics without partitioning
the data when running the applications. One limitation is

4453

that Lachesis largely depends on historical statistics to
design the state and calculate the reward, which could lead
to poor performance when the statistics are inadequate.

3.1.2 Data Compression

Data compression is widely employed to save storage space.
The effectiveness of a compression scheme however relies
on the data types and patterns. In time-series data, the pat-
tern can change over time and a fixed compression scheme
may not work well for the entire duration. Yu et al. [55] pro-
pose a two-level compression framework, where a scheme
space is constructed by extracting global features at the top
level and a compression schema is selected for each point at
the bottom level. The proposed AMMMO framework incor-
porates compression primitives and the control parameters,
which define the compression scheme space. Due to the fact
that the enumeration is computationally infeasible, the
framework proposes to adopt DRL to find the compression
scheme. The agent takes a block that consists of 32 data
points with the compressed header and data segment, time-
stamps, and metrics value as the state. The action is to select
a scheme from compression scheme space and then the
compression ratio is computed as the reward. The limitation
is that the method may not work for other data types like
images and videos.

3.2 Scheduling

Scheduling is a critical component in data processing and
analytics systems to ensure that resources are well utilized.
Job scheduling in a distributed computing cluster faces
many challenging factors such as workload (e.g., job depen-
dencies, sizes, priority), data locality, and hardware charac-
teristics. Existing algorithms using general heuristics such
as shortest-job-first do not utilize these factors well and fail
to yield top performance. To this end, Mao et al. [4] propose
Decima to learn to schedule jobs with dependent stages
using DRL for data processing clusters and improve the job
completion time. In the data processing systems such as
Hive [62], Pig [63], Spark-SQL [64], jobs could have up to
hundreds of stages and many stages run in parallel, which
are represented as directed acyclic graphs (DAGs) where
the nodes are the execution stages and each edge represents
the dependency. To handle parallelism and dependencies
in job DAGs, Decima first applies graph neural network
(GNN) to extract features as the state instead of manually
designing them while achieving scalability. Three types of
feature embeddings are generated. Node embedding cap-
tures information about the node and its children including
the number of remaining tasks, busy and available execu-
tors, duration, and locality of executors. Job embedding
aggregates all node embeddings in the job and cluster
embedding combines job embeddings. To balance possible
large action space and long action sequences, The action
determines the job stage to be scheduled next and the paral-
lelism limit of executors. The reward is based on the average
job completion time. To train effectively in a job streaming
environment, Decima gradually increases the length of
training jobs to conduct curriculum learning [65]. The vari-
ance reduction technique [25] is applied to handle stochastic
job arrivals for robustness. However, we note that Decima is

4454

non-preemptive and does not re-schedule for higher prior-
ity jobs.

In distributed stream data processing, streams of continu-
ous data are processed at scale in a real-time manner. The
scheduling algorithm assigns workers to process data where
each worker uses many threads to process data tuples and
aims to minimize average data tuple processing time. Li et al.
[56] design a scheduling algorithm using DRL for distributed
stream data processing, which learns to assign tuples to work
threads. The state consists of the scheduling plan (e.g., the
current assignment of workers) and the workload informa-
tion (e.g., tuple arrival rate). The action is to assign threads to
machines. The reward is the negative tuple processing time
on average. The work shows that DON does not work well
because the action space is large and applies DDPG to train
the actor-critic based agent instead. To find a good action, the
proposed method looks for k nearest neighbors of the action
that the actor network outputs and selects the neighbor with
the highest value that the critic network outputs. The algo-
rithm is implemented on Apache Storm and evaluated with
representative applications: log stream processing, continu-
ous queries, and word count.

Many works have been recently proposed to improve
scheduling using DRL [66], [67]. Query scheduling deter-
mines the execution order of queries, which has a great influ-
ence on query performance and resource utilization in the
database system. SmartQueue [66] improves query schedul-
ing by leveraging overlapping data access among queries
and learns to improve cache hits using DRL. In addition, Tim
et al. [67] design a scheduling system in SageDB using RL
techniques. Other works using RL for scheduling include
Bayesian RL for scheduling in heterogeneous clusters [68],
operation scheduling in devices [69], application container
scheduling in clusters [70], etc.

3.3 Tuning

Tuning the configuration of data processing and analytic sys-
tems plays a key role to improve system performance. The
task is challenging because up to hundreds of parameters and
complex relations between them could exist. Furthermore,
other factors such as hardware and workload also impact the
performance. Existing works often employ search-based or
supervised learning methods. The former takes much time to
get an acceptable configuration and the latter such as Otter-
Tune [71] needs large high-quality data that is non-trivial to
obtain in practice. Zhang et al. [9] design a cloud database tun-
ing system CDBTune using DRL to find the best parameter in
high-dimensional configuration space. The CDBTune formu-
lates MDP as follows. The state is represented by the internal
metrics (e.g., buffer size, pages read). The action is to increase
or decrease the knob values. The reward is the performance
difference between two states, which is calculated using
throughput and latency. CDBTune takes several hours on off-
line training in simulation and online training in the real envi-
ronment. Compared to OtterTune, CDBTune eases the
burden of collecting large training data sets. In the experi-
ments, CDBTune is shown to outperform DBA experts and
OtterTune and improve tuning efficiency under 6 different
workloads on four databases. One limitation of the approach
is that the workload information is ignored and thus it may
not perform well when the query workload is changed.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

To address the issue, Li ef al. [8] propose QTune that con-
siders query information to tune the database using DRL.
First, Qtune extracts features from SQL query including
types (e.g., insert, delete), tables, and operation (e.g., scan,
hash join) costs estimated by the database engine. The col-
umns attributes and operations like selection conditions in
the query are ignored. Subsequently, Qtune trains a DNN
model to predict the difference of statistics (e.g., updated
tuples, the number of committed transactions) in the state
after executing the queries in the workload and updates the
state using it. The action and reward design are similar to
CDBTune. Additionally, QTune supports three levels of
tuning granularity for balancing throughput and latency.
For query-level, QTune inputs query vector and tries to find
good knobs for each query. For workload-level, vectors for
all queries are merged and used. For cluster-level, QTune
employs a clustering method based on deep learning to
classify queries and merge queries into clusters. One draw-
back of QTune is that the query featurization could lose key
information such as query attributes (i.e., columns) and
hurt the performance especially when the cost estimation is
inaccurate. The prediction model for state changes is trained
alone and needs accurate training data. An end-to-end
training framework is therefore essential and a good direc-
tion to undertake.

3.4 Indexing
3.4.1 Database Index Selection

Database index selection considers which attributes to create
an index to maximize query performance. Sharma et al. [57]
show how DRL can be used to recommend an index based
on a given workload. The state encodes selectivity values for
workload queries and columns in the database schema and
current column indexes. The action is to create an index on a
column. The reward is the improvement compared to the
baseline without indexes. The experiments show that the
approach can perform as well or better as having indexes on
all columns. Sadri et al. [72] utilize DRL to select the index for
a cluster database where both query processing and load bal-
ancing are considered. Welborn et al. [73] optimize the action
space design by introducing task-specific knowledge for
index selection tasks in the database. However, these works
only consider the situation where single-column indexes are
built. Lan et al. [74] propose both single-attribute and multi-
attribute indexes selection using DRL. Five rules are pro-
posed to reduce the action and state space, which help the
agent learn effective strategy easier. The method uses what-
if caller [75] to get the cost of queries under specific index
configurations without building indexes physically. These
works conduct basic experiments with small and simple
datasets. Extensive and large-scale experiments using real
datasets are therefore needed to benchmark these methods
to ensure that they can scale well.

3.4.2 Index Structure Construction

The learned index is proposed recently as an alternative
index to replace the B*-Tree and bloom filter by viewing
indexes as models and using deep learning models to act as
indexes [76]. DRL can enhance the traditional indexes
instead of replacing them.

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS

Hierarchical structures such as the B*-tree and R-tree are
important indexing mechanisms to locate data of interest
efficiently without scanning a large portion of the database.
Compared to the single dimensional counterpart, the R-tree
is more complex to optimize due to bounding box efficiency
and multi-path traversals. Earlier conventional approaches
use heuristics to determine these two operations (i.e., choos-
ing the insertion subtree and splitting an overflowing node)
during the construction of the R-tree. Gu et al. [58] propose
to use DRL to replace heuristics to construct the R-tree and
propose the RLR-tree. The approach models two operations
ChooseSubtree and Split as two MDPs respectively and
combines them to generate an R-Tree. For ChooseSubtree,
the state is represented as the concatenation of the four fea-
tures (i.e., area, perimeter, overlap, occupancy rate) of each
selected child node. More features are evaluated but do not
improve the performance in the reported experiments. The
action is to select a node to insert from top-k child nodes in
terms of the increase of area. The reward is the performance
improvement from the RLR-tree. For Split MDP, the state is
the areas and perimeters of the two nodes created by all
top-k splits in the ascending order of total area. The action
is to choose one split rule from k rules and the reward is
similar to that of ChooseSubtree. The two agents are trained
alternately. As expected, the optimizations render the RLR-
tree improved performance in range and KNN queries.

Graphs can be used as effective indexes to accelerate
nearest neighbors search [77], [78]. Existing graph construc-
tion methods generally propose different rules to generate
graphs, which cannot provide adaptivity for different work-
loads [79]. Baranchuk et al. [80] employ DRL to optimize the
graph for nearest neighbors search. The approach learns the
probabilities of edges in the graph and tries to maximize the
search efficiency. It considers the initial graph and the
search algorithm as the state. The action is to keep an edge
or not. The reward is the performance for search. It chooses
the TRPO [46] algorithm to train. The reported experimental
results show that the agent can refine state-of-the-art graphs
and achieve better performance. However, this approach
does not learn to explore and add new edges to the initial
graph that may affect the performance.

Searching and constructing a new index structure is
another line of interesting research [81]. Inspired by Neural
Architecture Search (NAS) [82], Wu et al. [83] propose an
RNN-based neural index search (NIS) framework that
employs DRL to search the index structures and parameters
given the workload. NIS can generate tree-like index struc-
tures layer by layer via formalizing abstract ordered blocks
and unordered blocks, which can provide a well-designed
search space. The keys in the ordered block are sorted in
ascending order, and the skip list or B*-Tree can be used.
The keys in the unordered block are partitioned using cus-
tomized functions and the hash bucket can be used. Overall,
the whole learning process is similar to that of NAS.

3.5 Query Optimization

Query optimization aims to find the most efficient way to
execute queries in database management systems. There are
many different plans to access the query data that can have
a large processing time variance from seconds to hours. The
performance of a query plan is determined mostly by the

4455
TABLE 2
Methods of Query Optimization
Method Techniques Training ~ Workload
Adaptivity
Rejoin[11], learn from execution High Low
DQI[12] experience
SkinnerDB learn from current Medium Medium
[84] execution status
Baol[87] learn to choose Low High

existing optimizers

table join orders. Traditionally, query optimizers use certain
heuristics combined with dynamic programming to enu-
merate possible efficient execution plans and evaluate them
using cost models that could produce large errors [10]. Mar-
cus et al. [11] propose Rejoin that applies DRL to learn to
select better join orders utilizing past experience. The state
encodes join tree structure and join predicates. The action is
to combine two subtrees, where each subtree represents an
input relation to join. The reward is assigned based on the
cost model in the optimizer. The experiments show that
ReJOIN can match or outperform the optimizer in Post-
greSQL. Compared to ReJoin, DQ [12] presents an extensi-
ble featurization scheme for state representation and
improves the training efficiency using the DQN [28] algo-
rithm. Heitz et al. [60] compare different RL algorithms
including DQN [28], DDQN [31], and PPO [47] for join
order optimization and use a symmetric matrix to represent
the state instead of vector. Yu et al. [59] introduce a graph
neural network (GNN) with DRL for join order selection
that replaces fixed-length hand-tuned vector in Rejoin [11]
and DQ [12] with learned scalable GNN representation and
better captures and distinguishes the join tree structure
information. These works mainly differ in encoding what
information and how to encode them.

Instead of learning from past query executions, Trummer
et al. [84] propose SkinnerDB to learn from the current query
execution status to optimize the remaining execution of a
query using RL. Specifically, SkinnerDB breaks the query
execution into many small time intervals (e.g., tens to thou-
sands of slices per second) and processes the query adap-
tively. At the beginning of each time interval, the RL agent
chooses the join order and measures the execution progress.
SkinnerDB adopts a similar adaptive query processing strat-
egy in Eddies [85] and uses the UCT algorithm [86], which
provides formal guarantees that the difference is bounded
between the rewards obtained by the agent and those by
optimal choices. The reward is calculated by the progress
for the current interval. A tailored execution engine is
designed to fully exploit the learning strategy with tuple
representations and specialized multi-way join algorithms.
SkinnerDB offers several advantages. First, it is inherently
robust to query distribution changes because its execution
only depends on the current query. Second, it relies on less
assumption and information (e.g., cardinality models) than
traditional optimizers and thus is more suitable for the com-
plicated environment where cardinality is hard to estimate.
Third, it predicts the optimal join order based on real per-
formance. However, it may introduce overhead caused by
join order switching.

4456

Learning-based methods that have been proposed to
replace traditional query optimizers often incur a great deal
of training overhead because they have to learn from
scratch. To mitigate the problem, Bao [87] (the Bandit opti-
mizer)) is designed to take advantage of the existing query
optimizers. Specifically, Bao learns to choose the best plan
from the query plan candidates provided by available opti-
mizers by passing different flags or hints to them. Bao trans-
forms query plan trees into vectors and adopts a tree
convolutional neural network to identify patterns in the
tree. Then it formulates the choosing task as a contextual
multi-armed bandit problem and uses Thompson sampling
[33] to solve it. Bao is a hybrid solution for query optimiza-
tion. It achieves good training time and is robust to changes
in workload [87].

3.6 Cache Management
3.6.1 View Materialization

View materialization is the process of deciding which view,
i.e., results of query or subquery, to cache. In database sys-
tems, a view is represented as a table and other queries
could be accelerated by reading this table instead of access-
ing the original tables. There is an overhead of materializing
and maintaining the view when the original table is
updated. Existing methods are based on heuristics, which
either rely on simple Least-Recently-Used rule or cost-
model based approaches [88]. The performance of these
approaches is limited because feedback from the historical
performance of view materialization is not incorporated.
Liang et al. [89] implement Deep Q-Materialization (DQM)
system that leverages DRL to improve the view materializa-
tion process in the OLAP system. First, DOM analyzes SQL
queries to find candidate views for the current query. Sec-
ond, it trains a DRL agent to select from the set of candi-
dates. Third, it uses an eviction policy to delete the
materialized views. In the MDP, the state encodes view state
and workload information. The action is to create the view
or do nothing. The reward is calculated by the query time
improvement minus amortized creation cost. Additionally,
the eviction policy is based on credit and it evicts the materi-
alized view with the lowest score.

Yuan ef al. [61] present a different way that use DRL to
automate view generation and select the most beneficial
subqueries to materialize. First, the approach uses a DNN
to estimate the benefits of a materialized view where fea-
tures from tables, queries, and view plans are extracted.
Then the approach models selection as an Integer Linear
Programming (IIP) problem and introduce an iterative opti-
mization method to figure it out. However, the method can-
not guarantee convergence. To address the issue, the
problem is formulated as the MDP. The state encodes the
subqueries that are selected to materialize and status if
queries use these materialized views. The action is to choose
the subquery to materialize or not. The reward is the differ-
ence between benefit changes of two states. Both cost esti-
mation and view selection models are trained offline using
the actual cost of queries and benefits. Then the cost estima-
tion model is used for the online recommendation for view
materialization. Performance study shows its good perfor-
mance; However, it lacks a comparison with DQM.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

3.6.2 Storage

Cache management impacts the performance of computer
systems with hierarchical hardware structures directly. Gen-
erally, a caching policy considers which objects to cache, to
evict when the cache is full to maximize the object hit rate in
the cache. In many systems, the optimal caching policy
depends on workload characteristics. Phoebe [90] is the RL-
based framework for cache management for storage models.
The state encodes the information from a preceding fixed-
length sequence of accesses where for each access, nine fea-
tures are extracted including data block address, data block
address delta, frequency, reuse distance, penultimate reuse
distance, average reuse distance, frequency in the sliding
window, the number of cache misses, and a priority value.
The action is to set a priority value ranging within [—1, 1] to
the data. The reward is computed from if the cache is hit or
missed and values are 1 and -1 respectively. It applies the
DDPG algorithm to train the agent. Periodical training is
employed to amortize training costs in online training. In
network systems, one issue is that the reward delay is very
long in systems with a large cache, i.e., CDN cache can host
up to millions of objects. Wang et al. [91] propose a subsam-
pling technique by hashing the objects to mitigate the issue
when applying RL on caching systems.

4 DATA ANALYTICS APPLICATIONS

In this section, we shall discuss DRL applications from the
perspective of data processing and data analytics. These
two categories of DRL applications form indispensable
parts of a pipeline, in which data processing provides a bet-
ter basis for data analytics. In addition, these two categories
share some overlapping topics, making these topics mutu-
ally motivating and stimulating. We have summarized the
technical comparisons of different applications in Table 3.
We shall first discuss DRL applications in data preparation
and then in data analytics.

4.1 Data Preparation
4.1.1 Entity Matching

Entity matching is a data cleaning task that aligns different
mentions of the same entity in the context. Clark et al. [92]
identify the issue that the heuristic loss function cannot effec-
tively optimize the evaluation metric B?, and propose using
reinforcement learning to directly optimize the metric. The
problem is formulated as a sequential decision problem
where each action is performed on one mention of a docu-
ment. The action maps the mention to an entity in the data-
base at each step by a mention ranking model. Then the
reward is calculated using the evaluation metric B®. This
work originally proposes scaling each action’s weight by mea-
suring its impact on the final reward since each action is inde-
pendent. However, this work does not consider the global
relations between entities. Fang et al. [93] propose a reinforce-
ment learning framework based on the fact that an easier
entity will create a better context for the subsequent entity
matching. Specifically, both local and global representations
of entity mentions are modeled and a learned policy network
is devised to choose from the next action (i.e., which entity to
recognize). However, the selection of the easier entity to learn

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS 4457

TABLE 3
Representative Works for RL Applications
Domain Work Algorithm| D(State) D(Action)| DRL-based Approach
Data Entity matching [93], [94] PG 100 - | 100 - | Select target entity from the candidate enti-
processing 1000 1000 ties
application Database interaction with natural | PG 100 - | 100 - | Learn to generate the query
language [95], [96] 1000 1000
Feature engineering [17] DON 100 1-10 Select features and model feature correla-
tions in states
Exploratory data analysis [97] A3C 10-100 100000 Learn to query a dataset for key characteris-
tics
Abnormal detection [98] IRL 1-10 1-10 Learn the reward function for normal se-
quences
AutoML pipeline generation [99] DON 10 100 Learn to select modules of a pipeline
Healthcare Treatment recommendation [100] DDPG 10 100-1000 | Select treatment from candidate treatments
Diagnostic inference [101] DON 100-1000 1-10 Learn diagnostic decision
Hospital resource allocation [102] | DDPG 100 1000- Learn resource scheduling
10000
Fintech Portfolio optimization [103] Q- 100 100 Select the portfolio weights for stocks
Learning
Trading [104], [105] IRL 1-10 10 Learn the reward function of trading behav-
iors
Fraud detection [105] IRL 100 10-100 Learn the reward function of trading behav-
iors
E- Online advertising [106] DON 1-10 1-10 Learn to schedule the advertisements
Commerce Online recommendation [107] DON 100 10000 Learn to schedule recommendations
Search results aggregation [108] DON 10-100 10-100 Learn to schedule search results
Others User profiling [109] DON 100-1000 1000- Select users’ next activities by modeling spa-
10000 tial semantics
Spammer detection [110] PG 100 100 Search for the detector by interacting with
spammers
Transportation [111] PG 1000- 1000 Learn to schedule transportation
10000

D(X) denotes the approximate dimension of X space.

the context could be less powerful than context modeling with
more recent techniques in NLP such as the transformer.

4.1.2 Database Interaction With Natural Language

To facilitate query formulation for relational databases, there
have been efforts in generating SQL queries from various
other means that do not require knowledge of SQL and
schema. Zhong et al. [94] propose to generate SQL from a nat-
ural language using RL. For queries formed by a natural lan-
guage, the model Seq2SQL will learn a policy transforming
the queries into SQL queries. The transformed queries will
then be executed in the database system to get results. The
results will be compared with the ground truth to generate
RL rewards. Earlier work [95] using a generic autoencoder
model for semantic parsing with Softmax as the final layer
may generate unnecessarily large output spaces for SQL
query generation tasks. Thus the structure of SQL is used to
prune the output space of query generating and policy-based
reinforcement learning to optimize the part which cannot be
optimized by cross-entropy. However, RL is observed to
have limited performance enhancement by [111] due to
unnecessary modeling of query serialization.

Efficiently querying a database of documents is a promis-
ing data processing application. Karthik et al. [112] propose
collecting evidence from external sources of documents to
boost extraction accuracy to original sources where data
might be scarce. The problem is formulated as an MDP
problem, where each step the agent needs to decide if cur-
rent extracted articles are accepted and stop querying, or
these articles are rejected and more relevant articles are que-
ried. Both data reconciliation (from original sources) and

data retrieval (from external sources) are represented as
states. Extraction accuracy and penalties for extra retrieval
actions are reflected in the reward function.

4.1.3 Feature Engineering

Feature engineering can be formulated as a single-agent
reinforcement learning problem to search for an optimal
subset of features in a large space: the agent selects one fea-
ture at each action step. The state is the current feature sub-
space. A reward is assigned to the agent based on the
predictive performance of the current features subset. Liu
et al. [17] propose a method to reformulate feature engineer-
ing as a multi-agent reinforcement learning problem. The
multi-agent RL formulation reduces the large action space
of a single agent since now each of the agents has a smaller
action space for one feature selection. However, this formu-
lation also brings challenges: interactions between agents,
representation of the environment, and selection of samples.
Three technical methods in [17] have been proposed to
tackle them respectively: adding inter-feature information
to reward formulation, using meta statistics, and deep
learning methods to learn the representation of the environ-
ment, and Gaussian mixture to independently determine
samples. However, although this formulation reduces the
action space, the trade-off is using more computing resour-
ces to support more agents’ learning. Also, the method is
difficult to scale to a large feature space.

4.1.4 Exploratory Data Analysis

Exploratory data analysis (EDA) is useful for users to
understand the characteristics of a new dataset. In [96], the

4458

problem is formulated as an MDP. The action space is the
combination of a finite set of operators and their corre-
sponding parameters to query a dataset. The result of a
query shows the characteristics of the dataset. The charac-
teristics are modeled as the state, which is represented by
descriptive statistics and recent operators. The reward sig-
nal measures the interestingness, diversity, and coherency
of the characteristics by an episode of EDA operations. DRL
is applied to the non-differential signals and discrete states
in MDP. However, challenges arise when applying deep
reinforcement learning given a large number of possible
actions as parameterized operations (i.e., for each type of
operation, the corresponding possible action is the Carte-
sian product of all parameters’ possible values). In [96], a
two-fold layer architecture is proposed to replace a global
softmax layer into two local layers, which effectively
reduces the intractable large numbers of actions. However,
the global interactions of operations and attributes are not
considered.

4.1.5 Abnormal Detection

Abnormal detection is important for high-stake applications
such as healthcare (e.g., predicting patients’ status) and fin-
tech (e.g., financial crime). Based on the assumptions, there
are two approaches to this problem. One approach models
the dynamics in the unlabeled datasets as a sequential deci-
sion process where the agent performs an action on each
observation. Oh et al. [97] propose to use IRL to learn a
reward function and a Bayesian network to estimate a confi-
dence score for a potential abnormal observation. To achieve
this, the prior distribution of the reward function is assumed.
Then a reward function is sampled from the distribution to
determine the sample generating policy, which generates
sample background trajectories. As explained by the reward
part of Section 2.3.2, experts’ trajectories are observed. With
these experts’ trajectories and sample background trajecto-
ries, the parameters of the reward function are updated and
thus the policy is improved. The sequence of actions is the
input into the neural network. This network is trained to
learn the normal pattern of a targeted agent and to predict if
the next observation is abnormal or not. However, this
approach relies too much on mining unlabeled datasets and
ignores the labeled dataset. To address this issue, another
approach also uses DRL but focus on the Exploit-Explore
trade-off on both unlabeled and labeled dataset. Pang et al.
[113] propose a DRL model with a sampling function to
select data instances from both the unlabeled and labeled
dataset. This sampling function helps the DRL model to
exploit the scarce but useful labeled anomaly data instances
and to explore the large unlabeled dataset for novel anomaly
data instances. Thus, more anomaly data instances are
selected to train the DRL model with better model capacity.

4.1.6 AutoML Pipeline Generation

Pipeline generation includes generating all data processing
and analytics steps or modules to perform ML tasks. Heffetz
et al. [98] propose a grid-world to represent all possible fami-
lies of each step of a data pipeline as cells and connect all pos-
sible cells as a graph. Subsequently, a hierarchical method is
used to reduce the space of all actions and represent all

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

actions by layers of clusters. Finally, the state representations
are inputs to the value sub-network in a DQN network, and
action representations are inputs to evaluate the advantage-
to-average sub-network.

4.2 Healthcare

Healthcare analytics has gained increasing attention in tan-
dem with the advancement of healthcare treatment and
availability of medical data and computational capacity
[114]. Naturally, a great amount of effort has been spent on
applying DRL to healthcare. As before, implementing DRL-
based models in healthcare requires the understanding of
the application context and defining the key elements of
MDP. However, differences occur in the approaches to learn-
ing better decisions: learning the motivation of expert deci-
sions by IRL, learning better decisions without an expert by
interacting with an environment or interacting with an envi-
ronment with expert decisions as supervising signals.

4.2.1 Treatment Recommendation

Treatment recommendation systems are designed to assist
doctors to make better decisions based on electronic health
records. However, the doctors’ prescriptions are not ground
truth but valuable suggestions for high stake medical cases.
The ground truth is the delayed condition of the patients.
Thus model predictions must not deviate from the doctors’
judgments too much, and not use those judgments as true
labels. To tackle this challenge, Wang et al. [99] propose an
architecture to combine supervised learning and reinforce-
ment learning. This model reduces the inconsistency
between indicator signals learned from doctor’s prescrip-
tions via supervised learning and evaluation signals learned
from the long-term outcome of patients via reinforcement
learning. In the formulated MDP, the domain expert makes a
decision based on an unknown policy. The goal is to learn a
policy that simultaneously reduces the difference between
the chosen action of the agent and the expert’s decision and
to maximize the weighted sum of discounted rewards.

4.2.2 Diagnostic Inference

Using DRL to perform diagnosis can provide a second opin-
ion in high-intensity diagnosis from historical medical
records to reduce diagnostic errors. Ling et al. [100] propose
modeling the integration of external evidence to capture
diagnostic concept as a MDP. The objective is to find the opti-
mal policy function. The inputs are case narratives and the
outputs are improved concepts and inferred diagnoses. The
states are a set of measures over the similarity of current con-
cepts and externally extracted concepts. The actions are
whether to accept (part of) the extracted concepts from exter-
nal evidence. The environments are the top extracted case
narratives from Wikipedia as the document pool for con-
cepts extraction and a knowledge base for evaluating the
intermediate results for current best concepts. The rewards
are evaluated based on an external knowledge base mapping
from the concepts to the diagnoses. The whole process is
modeled by DQN. At each step, narrative cases and evidence
are extracted, which provide the initial concepts and external
concepts. The state representing the agent’s confidence in the
learned concept is duly calculated. Then the state is sent to

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS

Market Participants Rewards

Inverse Reinforcement Learning

Trader Learn

“--._‘_‘_‘k
..RPrcdcncd
$

Return Risk

Portfolio Manager — :
Reinforcement Leamning

Regulator Return ‘i‘ Risk
3 R
States Actions
Market Prices Sentiments

Changes in Assets

Portfolio Weights {lj

Other Participants Limit Market Orders

Fig. 3. DRL in fintech applications.

the DON agent to estimate the reward to model the long-run
accuracy of the learned concept by the agent. Iteratively, the
model converges with better concepts and diagnoses.

4.2.3 Hospital Resource Allocation

Allocating limited hospital resources is the key to providing
timely treatment for patients. In [101], the problem is formu-
lated as a classification problem where the patients’ features
are given and the target is to predict the location of admis-
sions. The RL framework uses a student network to solve
the classification problem. The weights of the student net-
work are used as states, which are fed into a teacher net-
work to generate actions to select which batch of data to
train the student network. The accuracy of the classification
is used as the reward. This method provides a view on the
resource allocation problem from a curriculum learning per-
spective. However, the temporal information of the data
samples is not considered but it could affect resource alloca-
tion since some hours during a day could have fewer
patients than the others.

4.3 Fintech

Reinforcement learning has wide applications in the finance
domain. First, reinforcement learning has brought new per-
spectives to let the finance research community revisit many
classic financial research topics. For example, traditional
financial research topics such as option pricing that are typi-
cally solved by the classic Black-Scholes model can be steered
through with a data-driven insight by reinforcement learning
[115]. Second, portfolio optimization, typically formulated as
a stochastic optimal control problem, can be addressed by
reinforcement learning. Finally, the agents are financial mar-
ket participants with different intentions. Reward functions
can be learned to model these intentions, and hence, make
better decisions as illustrated in Fig. 3. We refer readers with
further interest in finance to [116].

4.3.1 Dynamic Portfolio Optimization

The portfolio optimization problem is challenging because
of the high scale of the dimensionality and the high noise-
to-signal ratio nature of stock price data. The latter problem
of noisy observation can cause uncertainty in a learned pol-
icy. Therefore, [102] proposes a novel model structure based

4459

on the Q-learning to handle noisy data and to scale to high
dimensionality. The quadratic form of reward function is
shown to have a semi-analytic solution that is computation-
ally efficient. In the problem formulation, the agent’s actions
are represented as the changes in the assets at each time
step. The states are the concatenation of market signals and
the agent’s holding assets. This method enhances Q-learn-
ing by introducing an entropy term measuring the noise in
the data. This term acts as a regularization term forcing the
learned policy to be close to a reference policy that is mod-
eled by a Gaussian distribution.

4.3.2 Algorithm Trading Strategy Identification

Identification of algorithm trading strategies from historical
trades is important in fraud detection and maintaining a
healthy financial environment. [104] proposes using IRL to
learn the reward function behind the trading behaviors. The
problem is formulated as an Inverse Markov Decision Pro-
cess (IMDP). The states are the differences between the vol-
umes of bid orders and ask orders, which are discretized
into three intervals based on the values of the volumes. The
actions are the limit and market order discretized into 10
intervals each by their values. The prior distribution of the
reward function is a Gaussian Process parameterized by 6.
Given 6, the approximation of the posterior distribution of
reward is performed by maximum a posteriori (MAP). This
step would give a MAP estimated value of the reward. 6 is
optimized by a log-likelihood function on the posterior of
observations. The optimization process can be proved to be
convex which guarantees the global minimum. The learned
features are then used to identify and classify trading strate-
gies in the financial markets.

4.3.3 Sentiment-Based Trading

One of the main predictors in stock trading is sentiment,
which drives the demand of bid orders and asks orders. Sen-
timent scores are often represented by unstructured text data
such as news or twitters. [103] proposes treating the senti-
ment as the aggregated action of all the market participants,
which has the advantage of simplifying the modeling of the
numerous market participants. Specifically, the sentiment
scores are categorized into three intervals: high, medium,
and low as the action spaces. Compared to previous works,
the proposed method can model the dependency between
the sentiment and the market state by the policy function.
This method is based on Gaussian Inverse Reinforcement
Learning [117] similar to [104] as discussed at the beginning
of Section 4.3, which is effective at dealing with uncertainty
in the stock environment. This method provides a method
for modeling market sentiments. However, as IRL faces the
challenge of non-uniqueness of reward [19] of one agent’s
actions, the method does not address how aggregated
actions of multiple market participants can infer a unique
reward function.

4.4 E-Commerce
4.4.1 Online Advertising

With the increasing digitalization of businesses, sales and
competition for market shares have moved online in tandem.

4460

As aresult, online advertising has been increasing in its pres-
ence and importance and exploiting RL in various aspects.
One of the topics in online advertising, bidding optimization,
can be formulated as a sequential decision problem: the
advertiser is required to have strategic proposals with bid-
ding keywords sequentially to maximize the overall profit.
In [105], the issue of using static transitional probability to
model dynamic environments is identified and a new DRL
model is proposed to exploit the pattern discovered from
dynamic environments.

Including but not limited to advertising, Feng et al. [118]
propose to consider the whole picture of multiple ranking
tasks that occurred in the sequence of user’s queries. A new
multi-agent reinforcement learning model is proposed to
enable multiple agents to partially observe inputs and
choose actions through their own actor networks. The agents
communicate through a centralized critic model to optimize
a shared objective. This allows different ranking algorithms
to reconcile with each other when taking their own actions
and consider the contextual information.

4.4.2 Online Recommendation

The problem of an unstabilized reward function arises
because of the dynamic environment in the online recom-
mendation. For example, user preference is modeled as the
reward in DRL and it changes unexpectedly when a special
discount happens for some products. In [106], a random
stratified sampling method is proposed to calculate the opti-
mal way of stratifying by allocating more samples to the
strata with more weighted variance. Then the replay sam-
pling is improved to consider key attributes of customers
(e.g., gender, age, etc.), which are less volatile in the
dynamic environment. This allows the modeling of reward
function based on sampling from a pool with a longer hori-
zon, thus reducing the bias in the estimation of the reward
function. Lastly, the dynamic environment poses a chal-
lenge in setting an optimal policy used in regretting. A new
method in [106] is proposed to train an offline model to cal-
culate a real-time reward for a subset of customers to
approximate a reference policy, that is used as an offset in
the reward recalibration to stabilize the performance of the
DRL algorithm.

4.4.3 Search Results Aggregation

Aggregating useful search results in online shopping search
is important to improve the shopping experience. However,
the challenge of aggregating heterogeneous data sources is
often encountered. The heterogeneous data sources in
online shopping are different product categories such as a
shoe brand group or a particular topic group, each of which
is a ranking system. A new model in [107] is proposed to
decompose the task into two sub-tasks. The first one is to
select a data source for the current page of search results
based on historical users’ clicks on previous pages. Learning
to select the correct data source for each page is a sequential
decision-making problem. The second sub-task is to fill the
sequence of a page by selecting the best source from the can-
didate sources. However, the items from different sources
cannot be directly compared because of their heterogeneous
nature. The problem is solved by formulating the sub-task

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

as an RL task to let an agent fill up the sequence. However,
one limitation of this method is that lacking full annotations
of item relevance scores may constrain the model’s perfor-
mance on various scenarios [107].

4.5 Other Applications

DRL has been applied to various other applications. These
DRL methods are often used with a knowledge graph, con-
founders, or game theory to model application-specific
dynamics. These methods are not only well motivated from
their respective applications but also general enough to be
applied in other applications. However, these methods often
fail to be evaluated by experiments in other applications.

The problem of mobile user profiling aims to identify
user profiles to provide personalized services. In [108], the
action is the selection of a place of visit. The environment is
comprised of all users and a knowledge graph learning the
semantic connections between the spatial entities. The
knowledge graph is updated once a user’s new activity is
performed and then affects the agent’s prediction. The state
is the embedding of a user and the knowledge graph for the
current time step. The reward is determined by several met-
rics measuring the similarity between the predicted spatial
entities and the ground truth. This method considers the
spatial semantics of entities but does not consider how the
change of a user’s key attributes (e.g., career) will affect
activity prediction and policy learning, which could cause
instability in policy updating.

In the transportation system, drivers often get recom-
mendations and provide feedback in return to improve the
service. However, the recommendation often fails when
drivers make decisions in a complex environment. To
address this issue, in [110] a new method is proposed to
model hidden causal factors, called confounders, in a com-
plex environment. Specifically, the framework in [50] is
extended to include the confounders. First, all three ele-
ments (i.e.,, policy agent, environment, confounder) are
treated as agents. The effect of a confounder is modeled as
the policy of the hidden agent, which takes the observation
and action of the policy agent as inputs and performs an
action. The environment in turn takes the action based on
inputs of the hidden agent’s action and the policy agent’s
action and observation.

The problem of spammer detection aims to detect spam
generating strategies. The challenge is that the detectors
only detect easier spams while missing spams with strate-
gies. In [109], the problem is formulated as two agents coun-
teracting each other. One agent is the spammer, whose
policy is to maintain a distribution of spam strategies and
the action is to sample from the distribution. Another agent
is the detector, whose state is the detection results after a
spam attack and the action is to identify the spam. The
rewards of two agents are measured by winning or losing
revenue manipulation, respectively. The limitation of this
method is that there is no guarantee for equilibrium.

5 OPEN CHALLENGES AND FUTURE DIRECTIONS

RL approaches provide strong alternatives to traditional
heuristics or supervised learning-based algorithms. How-
ever, many challenges remain to be addressed.

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS

5.1 Open Challenges for System Optimization
5.1.1 MDP Formulation and Lack of Justification

The design of MDP impacts the performance and efficiency
of the RL algorithm greatly. The state should satisfy Markov
property that its representation contains enough relevant
information for the RL agent to make the optimal decision.
It should summarize the environment compactly because a
complicated state design will cause more training and infer-
ence costs. The action space should be designed carefully to
balance learning performance and computational complex-
ity. The reward definition directly affects the optimization
direction and the system performance. Additionally, the
process of reward calculation can involve costly data collec-
tion and computation in the data systems optimization.
Currently, many works rely on experimental exploration
and experience to formulate MDP while some works exploit
domain knowledge to improve the MDP formulation by
injecting task-specific knowledge into action space [73].
Generally, MDP can influence computational complexity,
data required, and algorithm performance. Unfortunately,
many works lack ablation studies of their MDP formula-
tions and do not justify the design in a convincing manner.
Therefore, automation of MDP formulation remains an
open problem.

5.1.2 RL Algorithm and Technique Selection

RL algorithms and techniques have different tradeoffs and
assumptions. Value-based DRL algorithms like DON are not
stable and guaranteed convergence. Policy-based DRL algo-
rithms like TRPO and PPO are often not efficient. Model-
based DRL algorithms do not guarantee that a better model
can result in a better policy. Value-based methods assume
full observability while policy-based ones assume episodic
learning. Off-policy algorithms are usually more efficient
than on-policy algorithms in terms of sample efficiency. One
example is that DQ [12] uses off-policy deep Q-learning to
increase data efficiency and reduce the number of training
queries needed. Training efficiency can be a big concern for
DRL-based system optimization, especially when the work-
load of the system could change dramatically and the model
needs to be retrained frequently. Generally, RL algorithms
and techniques selection affect the training efficiency and
effectiveness greatly.

5.1.3 Integration With Existing Systems

Integrating RL-based methods into the real system more
naturally and seamlessly faces many challenges. The RL
agent has to be evolved when the system environment
changes (e.g., workload) and the performance is degraded.
We need to design new model management mechanisms to
monitor, maintain, and upgrade the models. Furthermore,
we find that the RL-based solutions can be lightweight or
intrusive. The lightweight approach in which the RL agent
is not designed as a component of the system, e.g., using RL
to generate the qd-tree [16], is easier to integrate into the
system because it does not change the architecture of the
system dramatically. In contrast, the intrusive approach
such as using RL models for join order optimization [11] is
deeply embedded in the system and hence may need a rede-
sign and optimization of the original system architecture to

4461

support model inference efficiently. SageDB [67] proposes
to learn various database system components by integrating
RL and other ML techniques. Nevertheless, the proposed
model-driven database system is yet to be fully implemented
and benchmarked. It is likely that the data system architec-
ture needs to be overhauled or significantly amended in
order to graft data-driven RL solutions into the data system
seamlessly to yield an overall performance gain.

5.1.4 Reproducibility and Benchmark

In the data system optimization problem, RL algorithms are
not easy to be reproduced due to many factors such as lack-
ing open source codes, workload, historic statistics used, and
the unstable performance of RL algorithms. The landscape of
problems in system optimization is vast and diverse. It could
prevent fair comparison and optimization for future research
works and deployments in practice. Lacking benchmarks is
another challenge to evaluate these RL approaches. The
benchmarks are therefore to provide standardized environ-
ments and evaluation metrics to conduct experiments with
different RL approaches. There are some efforts to mitigate
the issue. For example, Park [119] is an open platform for
researchers to conduct experiments with RL. However, it
only provides a basic interface and lacks system specifica-
tions. There is much room to improve with regards to the
reproducibility and benchmark in order to promote the
development and adoption of RL-based methods [120].

5.2 Open Challenges for Applications
5.2.1 Lack of Adaptability

There is a lack of adaptability for methods on a single com-
ponent of a data pipeline to the whole. For example, many
works focus on data cleaning tasks such as entity matching.
However, little works have shown their efficiency in
deploying their model in an end-to-end data pipeline. These
works treat the tasks isolatedly from other tasks in the pipe-
line, thereby limiting the pipeline’s performance. In health-
care, each method is applied in different steps of the whole
treatment process, without being integrated and evaluated
as one pipeline. One possible direction could be considering
DRL as a module in the data pipeline optimization. How-
ever, data pipeline optimization has been focusing on mod-
els simpler than DRL to enable fast pipeline evaluation
[121]. How to efficiently incorporate DRL into the data pipe-
line optimization remains a challenge.

5.2.2 Difficulty in Comparison With Different Applications

To date, most works with generalized contributions are only
evaluated domain-specifically. Research questions are often
formulated in their own platform as in E-Commerce. This
presents difficulty in evaluating the methods for different
environments. For example, the confounders modeling hid-
den causal factors in [110] can also contribute to DRL model-
ing in E-commerce. This is because modeling customers’
interests are always subject to changing environments and a
new environment may contain hidden causal factors. For
example, consumers are more willing to buy relevant prod-
ucts for certain situations such as Covid-19. Thus a general

4462

DRL method is yet to show the robustness and effectiveness
under the environment of different applications.

5.2.3 Lack of Prediction in Multi-Modality

In healthcare and finance, multiple sources of data bring dif-
ferent perspectives. For example in healthcare, electronic
health records, image scans, and medical tests can provide
different features for accurate prediction. In addition, these
sources of data with different sample frequencies provide
contextual information for modeling a patient’s visits to the
hospital or symptom development. However, most innova-
tions in healthcare focus on one particular source of data.
How to integrate the contextual information with multi-
modality effectively remains an unsolved difficult problem.

5.2.4 Injecting Domain Knowledge in Experience

Replay

In high-stake applications such as healthcare and finance,
injecting domain knowledge can make decision making in
RL more robust and explainable. One possible way is to
inject the knowledge of human beings’ experience into an
agent’s experience pool as a prior distribution for the policy.
For example, in dynamic portfolio optimization, a portfolio
manager could have a large source of experience for risk
management and profit optimization. Such experience could
be useful for warming up the agent’s exploration in the
search space. Some works have shown positive effects of
domain knowledge injection on selecting important experi-
ences (i.e., transition samples) [36]. Notwithstanding, it
remains a big challenge to inject useful and relevant knowl-
edge from the experience into the agent’s experience pool.

5.3 Future Research Directions
5.3.1 Data Structure Design

DRL provides an alternative way to find good data struc-
tures through feedback instead of designing them based on
human knowledge and experience, e.g., decision tree [5]
and the qd-tree [16]. These trees are optimized better
because they are learned by interacting with the environ-
ment. DRL has also been effective in graph designs (e.g.,
molecular graph [122]). However, large-scale graph genera-
tion using DRL is difficult and daunting because it involves
a huge search space. Generating other important structures
using DRL remains to be explored. Idreos et al. [81] propose
a Data Alchemist that learns to synthesize data structures by
DRL and other techniques including Genetic Algorithms
and Bayesian Optimization. In summary, DRL has a role in
the design of more efficient data structures by interacting
and learning from the environment. These indexes have to
be adaptive to different data distributions and workloads.

5.3.2 Interpretability

The underlying logic behind the DRL agent is still unknown.
In high-risk application areas such as healthcare, the adoption
of DRL will be a big issue in the case that these approaches
make wrong decisions and people do not know why it hap-
pens due to lack of interpretability. Many techniques have
been proposed to mitigate the issue and provide interpretabil-
ity [22]. However, they neglect domain knowledge from

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

related fields and applications and the explanations are not
effective to human users. To instill confidence in the deploy-
ment of DRL-based systems in practice, interpretability is an
important component and we should avoid treating DRL sol-
utions as black boxes especially in critical applications.

5.3.3 Robustness by Causal Reasoning

Modeling real-world applications by DRL inevitably suffers
from the problem of distribution changes. The real world
has independent physical mechanisms that can be seen as
different modules. For example, an image is subjected to the
light of the environment. Given the modular property, a
structural type of modeling focusing on factorizing the
causal mechanisms can extract the invariant causal mecha-
nisms and show robustness cross distribution changes
[123]. One research direction towards DRL robust decision
making is to perform sampling from past actions from a
causal perspective. Given the invariance property of causal
mechanisms, past actions can be reused by capturing the
invariant mechanisms in a changing environment.

5.3.4 Extension to Other Domains

Beyond existing works, many classic problems in the data
system and analytics could potentially be solved by DRL.
For example, Polyjuice [124] learns the concurrency control
algorithm for a given workload by defining fine-grained
actions and states in the context of concurrency control.
Though they use an evolutionary algorithm to learn and out-
perform a simple DRL baseline, we believe that there are
huge potentials to further improve DRL for niche applica-
tions. Hence, we expect that more problems will be explored
and solved with DRL in various domains in the near future.

5.3.5 Towards Intelligent and Autonomous Databases

Although DRL algorithms could provide breakthrough per-
formance on many tasks than traditional methods, many
issues need to be addressed towards intelligent and autono-
mous databases. First, database schema could be updated
and DRL models trained on the previous snapshots may
not work. DRL algorithms need to tackle generalization
[125]. Second, it would be so costly and infeasible to train
models from scratch for each scenario and setting. Transfer
learning from existing models could be a potential way to
ease the workload greatly. Third, we have to choose appro-
priate DRL algorithms automatically, in the same spirit as
AutoML. Fourth, current DBMS systems were designed
without considering much about the learning mechanism.
A radically new DBMS design may be proposed based on
the learning-centric architecture. To support intelligent and
autonomous database systems, DRL models intelligent
behaviors and may provide a solid basis for achieving artifi-
cial general intelligence based on reward maximization and
trial-and-error experience [126].

6 CONCLUSION

In this survey, we present a comprehensive review of recent
advances in utilizing DRL in data processing and analytics.
The DRL agent could learn to understand and solve various
tasks with the right incentives. First, we introduce basic

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS

foundations and practical techniques in DRL. Next, we sur-
vey and review DRL for data processing and analytics from
two perspectives, systems and applications. We cover a large
number of topics ranging from fundamental problems in
system areas such as tuning and scheduling to important
applications such as healthcare and fintech. Finally, we dis-
cuss key challenges and future directions for applying DRL
in data processing and analytics. We hope the survey would
serve as a basis for research and development in this emerg-
ing area, and better integration of DRL techniques into data
processing pipelines and stacks.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments and suggestions. Qingpeng Cai, Can Cui, and
Yiyuan Xiong contribute equally to this work.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Manyika et al., Big Data: The Next Frontier for Innovation, Compe-
tition, and Productivity. Washington, DC, USA: McKinsey Global
Institute, 2011.

X. Meng et al., “MLlib: Machine learning in apache spark,” J.
Mach. Learn. Res., vol. 17, no. 1, pp. 1235-1241, 2016.

W. Wang et al., “Rafiki: Machine learning as an analytics service
system,” Proc. VLDB Endowment, vol. 12, no. 2, pp. 128-140, 2018.
H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data process-
ing clusters,” in Proc. ACM Special Int. Group Data Commun.,
2019, pp. 270-288.

E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classi-
fication,” in Proc. ACM Special Int. Group Data Commun., 2019,
pp. 256-269.

B. Vamanan, G. Voskuilen, and T. Vijaykumar, “EffiCuts: Optimiz-
ing packet classification for memory and throughput,” Proc. ACM
Special Int. Group Data Commun., vol. 40, no. 4, pp. 207-218, 2010.
W.Li, X. Li, H. Li, and G. Xie, “CutSplit: A decision-tree combin-
ing cutting and splitting for scalable packet classification,” in
Proc. IEEE Conf. Comput. Commun., 2018, pp. 2645-2653.

G. Li, X. Zhou, S. Li, and B. Gao, “QTune: A query-aware data-
base tuning system with deep reinforcement learning,” Proc.
VLDB Endowment, vol. 12, no. 12, pp. 2118-2130, 2019.

J. Zhang et al., “An end-to-end automatic cloud database tuning
system using deep reinforcement learning,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2019, pp. 415-432.

V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T.
Neumann, “How good are query optimizers, really?,” Proc.
VLDB Endowment, vol. 9, no. 3, pp. 204-215, 2015.

R. Marcus and O. Papaemmanouil, “Deep reinforcement learn-
ing for join order enumeration,” in Proc. 1st Int. Workshop Exploit-
ing Artif. Intell. Techn. Data Manage., 2018, pp. 1-4.

S. Krishnan, Z. Yang, K. Goldberg,]. Hellerstein, and I. Stoica,
“Learning to optimize join queries with deep reinforcement
learning,” 2018, arXiv:1808.03196.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 2018.

D. Silver et al., “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140-1144, 2018.

D. Silver et al., “Mastering the game of go with deep neural net-
works and tree search,” Nature, vol. 529, no. 7587, pp. 484489,
2016.

Z.Yang et al., “Qd-tree: Learning data layouts for big data analy-
tics,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020,
pp- 193-208.

K. Liu, Y. Fu, P. Wang, L. Wu, R. Bo, and X. Li, “Automating fea-
ture subspace exploration via multi-agent reinforcement
learning,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2019, pp. 207-215.

B. Hilprecht, C. Binnig, and U. Rohm, “Learning a partitioning
advisor for cloud databases,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2020, pp. 143-157.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

4463

H. Dong, H. Dong, Z. Ding, S. Zhang, and Chang, Deep Reinforce-
ment Learning. Berlin, Germany: Springer, 2020.

C. Yu, J. Liu, S. Nemati, and G. Yin, “Reinforcement learning in
healthcare: A survey,” ACM Comput. Surveys, vol. 55, no. 1, pp. 1-36,
2021.

N. C. Luong et al., “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Commun.
Surv. Tut., vol. 21, no. 4, pp. 3133-3174, Oct.—Dec. 2019.

E. Puiutta and E. M. Veith, “Explainable reinforcement learning;:
A survey,” in Proc. Int. Cross-Domain Conf. Mach. Learn. Knowl.
Extraction, 2020, pp. 77-95.

W. Wang, M. Zhang, G. Chen, H. Jagadish, B. C. Ooi, and K.-L.
Tan, “Database meets deep learning: Challenges and oppor-
tunities,” ACM SIGMOD Rec., vol. 45, no. 2, pp. 17-22, 2016.

R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731,
pp- 34-37, 1966.

H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
“Variance reduction for reinforcement learning in input-driven envi-
ronments,” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1-20.

G. A. Rummery and M. Niranjan, On-Line Q-Learning Using Con-
nectionist Systems, vol. 37. Cambridge, U.K.: Cambridge Univ.
Press, 1994.

C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3/4, pp. 279-292, 1992.

V. Mnih et al., “Playing atari with deep reinforcement learning,”
2013, arXiv:1312.5602.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with func-
tion approximation,” in Proc. Int. Conf. Neural Informat. Process.
Syst., 2000, pp. 1057-1063.

D.Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proc. Int.
Conf. Mach. Learn., 2014, pp. 387-395.

T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

P. Auer, “Using confidence bounds for exploitation-exploration
trade-offs,” J. Mach. Learn. Res., vol. 3, no. Nov, pp. 397-422, 2002.
W. R. Thompson, “On the likelihood that one unknown probabil-
ity exceeds another in view of the evidence of two samples,” Bio-
metrika, vol. 25, pp. 285-294, 1933.

L.-J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,” Mach. Learn., vol. 8, no. 3/4,
pp- 293-321, 1992.

S.Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,”
in Reinforcement Learning, Berlin, Germany: Springer, 2012, pp. 45-73.
T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” 2015, arXiv:1511.05952.

V. Mnih et al., “Asynchronous methods for deep reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928-1937.

N. Heess et al., “Emergence of locomotion behaviours in rich
environments,” 2017, arXiv:1707.02286.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brow-
nian motion,” Phys. Rev., vol. 36, 1930, Art. no. 823.

M. Fortunato et al., “Noisy networks for exploration,” 2017,
arXiv:1706.10295.

M. Plappert et al., “Parameter space noise for exploration,” 2017,
arXiv:1706.01905.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N.
Freitas, “Dueling network architectures for deep reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1995-2003.

M. Hausknecht and P. Stone, “Deep recurrent Q-learning for par-
tially observable MDPs,” 2015, arXiv:1507.06527.

V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529-533, 2015.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in Proc. Conf. Assoc. Advance.
Artif. Intell., vol. 30, no. 1, pp. 20942100, 2016.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz,
“Trust region policy optimization,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 1889-1897.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.
T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum,
“Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation,” 2016, arXiv:1604.06057.
A.Y.Ng,S.]. Russell et al., “Algorithms for inverse reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., 2000, Art. no. 2.

4464

(501
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

[76]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 5, MAY 2023

J. Ho and S. Ermon, “Generative adversarial imitation learning,”
2016, arXiv:1606.03476.

C. Berner ef al., “Dota 2 with large scale deep reinforcement
learning,” 2019, arXiv:1912.06680.

G. C. Durand et al., “Gridformation: Towards self-driven online
data partitioning using reinforcement learning,” in Proc. 1st Int.
Workshop Exploiting Artif. Intell. Techn. Data Manage., 2018, pp. 1-7.
G. C. Durand, R. Piriyev, M. Pinnecke, D. Broneske, B. Gurumur-
thy, and G. Saake, “Automated vertical partitioning with deep
reinforcement learning,” in Proc. Eur. Conf. Adv. Databases Infor-
mat. Syst., 2019, pp. 126-134.

J. Zou et al., “Lachesis: Automated generation of persistent parti-
tionings for big data applications,” Proc. VLDB Endowment, vol. 14,
2021, pp. 1262-1275.

X.Yu, Y. Peng, F. Li, S. Wang, X. Shen, H. Mai, and Y. Xie, “Two-
level data compression using machine learning in time series data-
base,” in Proc. IEEE 36th Int. Conf. Data Eng., 2020, pp. 1333-1344.

T. Li, Z. Xu,]J. Tang, and Y. Wang, “Model-free control for dis-
tributed stream data processing using deep reinforcement
learning,” Proc. VLDB Endowment, vol. 11, pp. 705-718, 2018.

A. Sharma, F. M. Schuhknecht, and J. Dittrich, “The case for auto-
matic database administration using deep reinforcement
learning,” 2018, arXiv:1801.05643.

T. Gu, K. Feng, G. Cong, C. Long, Z. Wang, and S. Wang, “The
RLR-Tree: A reinforcement learning based R-Tree for spatial
data,” 2021, arXiv:2103.04541.

X. Yu, G. Li, C. Chai, and N. Tang, “Reinforcement learning with
Tree-LSTM for join order selection,” in Proc. IEEE Int. Conf. Data
Eng., 2020, pp. 1297-1308.

J. Heitz and K. Stockinger, “Join query optimization with deep
reinforcement learning algorithms,” 2019, arXiv:1911.11689.

H. Yuan, G. Li, L. Feng, J. Sun, and Y. Han, “Automatic view
generation with deep learning and reinforcement learning,” in
Proc. IEEE Int. Conf. Data Eng., 2020, pp. 1501-1512.

A. Thusoo et al., “Hive: A warehousing solution over a map-
reduce framework,” Proc. VLDB Endowment, vol. 2, no. 2,
pp. 1626-1629, 2009.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: A not-so-foreign language for data processing,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008, pp. 1099-1110.
M. Armbrust et al., “Spark SQL: Relational data processing in
spark,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015,
pp. 1383-1394.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. Int. Conf. Mach. Learn., 2009, pp. 41-48.

C. Zhang, R. Marcus, A. Kleiman, and O. Papaemmanouil,
“Buffer pool aware query scheduling via deep reinforcement
learning,” 2020, arXiv:2007.10568.

T. Kraska et al., “SageDB: A learned database system,” in Proc.
Conf. Innov. Data Syst. Res., 2019, pp. 1-10.

S. Banerjee, S. Jha, Z. Kalbarczyk, and R. Iyer, “Inductive-bias-
driven reinforcement learning for efficient schedules in heteroge-
neous clusters,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 629-641.
Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device place-
ment for training deep neural networks,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 1676-1684.

L. Wang, Q. Weng, W. Wang, C. Chen, and B. Li, “Metis: Learn-
ing to schedule long-running applications in shared container
clusters at scale,” in Proc. Int. Conf. High Perform. Comput. Netw.
Storage Anal., 2020, pp. 1-17.

D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic
database management system tuning through large-scale
machine learning,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2017, pp. 1009-1024.

Z.Sadri, L. Gruenwald, and E. Lead, “DRLindex: Deep reinforce-
ment learning index advisor for a cluster database,” in Proc. 24th
Symp. Int. Database Eng. Appl., 2020, pp. 1-8.

J. Welborn, M. Schaarschmidt, and E. Yoneki, “Learning index
selection with structured action spaces,” 2019, arXiv:1909.07440.
H. Lan, Z. Bao, and Y. Peng, “An index advisor using deep rein-
forcement learning,” in Proc. ACM Int. Conf. Informat. Knowl.
Manage., 2020, pp. 2105-2108.

S.Chaudhuriand V. Narasayya, “Autoadmin “what-if” index anal-
ysis utility,” ACM SIGMOD Rec., vol. 27, no. 2, pp. 367-378, 1998.

T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The
case for learned index structures,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2018, pp. 489-504.

[771]

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[871

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[991

[100]

[101]

[102]

Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small
ICDE graphs,” Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 824-836,
2018.

W. Dong, C. Moses, and K. Li, “Efficient K-nearest neighbor
graph construction for generic similarity measures,” in Proc. 20th
Int. Conf. World Wide Web, 2011, pp. 577-586.

M. Wang, X. Xu, Q. Yue, and Y. Wang, “A comprehensive survey
and experimental comparison of graph-based approximate near-
est neighbor search,” 2021, arXiv:2101.12631.

D. Baranchuk and A. Babenko, “Towards similarity graphs con-
structed by deep reinforcement learning,” 2019, arXiv:1911.12122.
S.Idreos et al., “Learning data structure alchemy,” Bull. IEEE Com-
put. Soc. Tech. Committee Data Eng., vol. 42, no. 2, pp. 46-57, 2019.
B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” 2016, arXiv:1611.01578.

S.Wu, X. Yu, X. Feng, F. Li, W. Cao, and G. Chen, “Progressive neu-
ral index search for database system,” 2019, arXiv:1912.07001.

L. Trummer, . Wang, D. Maram, S. Moseley, S. Jo, and J. Antona-
kakis, “SkinnerDB: Regret-bounded query evaluation via rein-
forcement learning,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2019, pp. 1153-1170.

K. Tzoumas, T. Sellis, and C. S. Jensen, “A reinforcement learn-
ing approach for adaptive query processing,” in DB Technical
Report, Aalborg Univ., 2008.

L. Kocsis and C. Szepesvéri, “Bandit based monte-carlo
planning,” in Proc. Eur. Conf. Mach. Learn., 2006, pp. 282-293.

R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T.
Kraska, “Bao: Making learned query optimization practical,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2021, pp. 1275-1288.
L. L. Perez and C. M. Jermaine, “History-aware query optimiza-
tion with materialized intermediate views,” in Proc. IEEE Int.
Conf. Data Eng., 2014, pp. 520-531.

X. Liang, A.]J. Elmore, and S. Krishnan, “Opportunistic view
materialization with deep reinforcement learning,” 2019,
arXiv:1903.01363.

N. Wu and P. Li, “Phoebe: Reuse-aware online caching with rein-
forcement learning for emerging storage models,” 2020,
arXiv:2011.07160.

H. Wang, H. He, M. Alizadeh, and H. Mao, “Learning caching
policies with subsampling,” in Proc. NeurIPS Mach. Learn. Syst.
Workshop, 2019, pp. 1-5.

K. Clark and C. D. Manning, “Deep reinforcement learning for
mention-ranking coreference models,” 2016, arXiv:1609.08667.

Z. Fang, Y. Cao, Q. Li, D. Zhang, Z. Zhang, and Y. Liu, “Joint
entity linking with deep reinforcement learning,” in Proc. World
Wide Web Conf., 2019, pp. 438-447.

V. Zhong, C. Xiong, and R. Socher, “Seq2SQL: Generating structured
queries from natural language using reinforcement learning,” 2017,
arXiv:1709.00103.

L. Dong and M. Lapata, “Language to logical form with neural
attention,” 2016, arXiv:1601.01280.

O. Bar El, T. Milo, and A. Somech, “Automatically generating
data exploration sessions using deep reinforcement learning,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020, pp. 1527-1537.
M.-H. Oh and G. Iyengar, “Sequential anomaly detection using
inverse reinforcement learning,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2019, pp. 1480-1490.

Y. Heffetz, R. Vainshtein, G. Katz, and L. Rokach, “DeepLine:
AutoML tool for pipelines generation using deep reinforcement
learning and hierarchical actions filtering,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2020, pp. 2103-2113.

L. Wang, W. Zhang, X. He, and H. Zha, “Supervised reinforce-
ment learning with recurrent neural network for dynamic treat-
ment recommendation,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2018, pp. 2447-2456.

Y. Ling et al., “Diagnostic inferencing via improving clinical con-
cept extraction with deep reinforcement learning: A prelimi-
nary study,” in Proc. 2nd Mach. Learn. Healthcare Conf., 2017,
pp. 271-285.

R. El-Bouri, D. Eyre, P. Watkinson, T. Zhu, and D. Clifton,
“Student-teacher curriculum learning via reinforcement learn-
ing: Predicting hospital inpatient admission location,” in Proc.
Int. Conf. Mach. Learn., 2020, pp. 2848-2857.

M. Dixon and I. Halperin, “G-Learner and GIRL: Goal based
wealth management with reinforcement learning,” 2020, arXiv:
2002.10990.

CAI ETAL.: SURVEY ON DEEP REINFORCEMENT LEARNING FOR DATA PROCESSING AND ANALYTICS 4465

g

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

S.Y.Yang, Y. Yu, and S. Almahdi, “An investor sentiment reward-
based trading system using gaussian inverse reinforcement learn-
ing algorithm,” Expert Syst. Appl., vol. 114, pp. 388401, 2018.
S.Y.Yang, Q. Qiao, P. A. Beling, W. T. Scherer, and A. A. Kirilenko,
“Gaussian process-based algorithmic trading strategy identi-
fication,” Quantitative Finance, vol. 15, no. 10, pp. 1683-1703, 2015.

J. Zhao, G. Qiu, Z. Guan, W. Zhao, and X. He, “Deep reinforcement
learning for sponsored search real-time bidding,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 1021-1030.
S-Y. Chen, Y. Yu, Q. Da, J. Tan, H.-K. Huang, and H.-H. Tang,
“Stabilizing reinforcement learning in dynamic environment with
application to online recommendation,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2018, pp. 1187-1196.

R. Takanobu, T. Zhuang, M. Huang, J. Feng, H. Tang, and B.
Zheng, “Aggregating e-commerce search results from heteroge-
neous sources via hierarchical reinforcement learning,” in Proc.
World Wide Web Conf., 2019, pp. 1771-1781.

P. Wang, K. Liu, L. Jiang, X. Li, and Y. Fu, “Incremental mobile
user profiling: Reinforcement learning with spatial knowledge
graph for modeling event streams,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2020, pp. 853-861.

Y. Dou, G. Ma, P. S. Yu, and S. Xie, “Robust spammer detection
by nash reinforcement learning,” in Proc. ACM SIGKDD Int.
Conf. Knowl. Discov. Data Mining, 2020, pp. 924-933.

W.Shang, Y. Yu, Q. Li, Z. Qin, Y. Meng, and J. Ye, “Environment
reconstruction with hidden confounders for reinforcement learn-
ing based recommendation,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2019, pp. 566-576.

X. Xu, C. Liu, and D. Song, “SQLNet: Generating structured
queries from natural language without reinforcement learning,”
2017, arXiv:1711.04436.

K. Narasimhan, A. Yala, and R. Barzilay, “Improving informa-
tion extraction by acquiring external evidence with reinforce-
ment learning,” 2016, arXiv:1603.07954.

G. Pang, A. van den Hengel, C. Shen, and L. Cao, “Toward deep
supervised anomaly detection: Reinforcement learning from par-
tially labeled anomaly data,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2021, pp. 1298-1308.

C. Lee et al., “Big healthcare data analytics: Challenges and
applications,” in Handbook of Large-Scale Distributed Computing in
Smart Healthcare, Berlin, Germany: Springer, 2017.

I. Halperin, “The QLBS Q-learner goes NuQlear: Fitted Q itera-
tion, inverse RL, and option portfolios,” Quantitative Finance,
vol. 19, no. 9, pp. 1543-1553, 2019.

F. D. Matthew, H. Igor, and B. Paul, “Machine learning in finance:
From theory to practice,” Berlin, Germany: Springer, 2021.

S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse rein-
forcement learning with gaussian processes,” in Proc. Int. Conf.
Neural Informat. Process. Syst., 2011, pp. 19-27.

J. Feng et al., “Learning to collaborate: Multi-scenario ranking via
multi-agent reinforcement learning,” in Proc. Conf. World Wide
Web, 2018, pp. 1939-1948.

H. Mao et al., “Park: An open platform for learning-augmented
computer systems,” in Proc. Int. Conf. Neural Informat. Process.
Syst., 2019, pp. 2494-2506.

P. Henderson, R. Islam, P. Bachman,]J. Pineau, D. Precup, and D.
Meger, “Deep reinforcement learning that matters,” in Proc.
Conf. Assoc. Advance. Artif. Intell., 2018, pp. 3207-3214.

Z. Luo et al., “MLCask: Efficient management of component evo-
lution in collaborative data analytics pipelines,” in Proc. IEEE Int.
Conf. Data Eng., 2021, pp. 1655-1666.

J. You, B. Liu, R. Ying, V. Pande, and]. Leskovec, “Graph convo-
lutional policy network for goal-directed molecular graph gener-
ation,” in Proc. Int. Conf. Neural Informat. Process. Syst., 2018,
pp. 6412-6422.

B. Scholkopf et al., “Toward causal representation learning,”
Proc. IEEE, vol. 109, no. 5, pp. 612-634, May 2021.

J. Wang et al., “Polyjuice: High-performance transactions via
learned concurrency control,” in Proc. 15th USENIX Symp. Oper.
Syst. Des. Implementation, 2021, pp. 198-216.

C. Packer, K. Gao, J. Kos, P. Krahenbtihl, V. Koltun, and D. Song,
“Assessing generalization in deep reinforcement learning,” 2018,
arXiv:1810.12282.

D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is
enough,” Artif. Intell., vol. 299, 2021, Art. no. 103535.

Qingpeng Cai received the BSc degree from
Zhejiang University, China, in 2019 and currently
working toward the PhD degree with the National
University of Singapore. He was a research intern
with the Zhejiang University CCNT lab in 2017
and the National University of Singapore SSI lab
in 2018. His research interests lie in healthcare,
time-series representation learning, and rein-
forcement learning.

Can Cui received the MSc degree from Singa-
pore Management University. He is currently
working toward the PhD degree with the School
of Computing, National University of Singapore.
His research interests lie in the interdisciplinary
area of machine learning and finance.

Yiyuan Xiong received the BSc degree from the
School of Electronics Engineering and Computer
Science, Peking University, China, in 2017. He is
currently working toward the PhD degree with the
School of Computing, National University of Sin-
gapore, Singapore. His research interests lie in
the intersection between database and machine
learning, especially reinforcement learning.

Wei Wang received the BSc degree from the
Renmin University of China, Beijing, China, in
2011 and the PhD degree from the National Uni-
versity of Singapore, Singapore, in 2017. He is a
researcher with ByteDance. His research inter-
ests include deep learning systems and applica-
tions for multimedia data. He has served as a PC
member for the ACM Multimedia, VLDB, SIG-
MOD, ICDE, and DASFAA.

Zhongle Xie received the BSc degree from
Shanghai Jiao Tong University in 2014 and the
PhD degree from the National University of Sin-
gapore in 2020. He is currently a researcher with
the Institute of Computing Innovation, Zhejiang
University. His research interests include index-
ing, query processing and database systems. He
has served as a member of the review board for
VLDB’21.

)]
2}

./
S

Meihui Zhang (Member, IEEE) received the BEng
in computer science from the Harbin Institute of
Technology, China, in 2008, and the PhD in com-
puter science from the National University of Sin-
gapore, Singapore, in 2013. She is currently a
professor with the Beijing Institute of Technology,
Beijing, China and was an assistant professor with
the Singapore University of Technology and
Design (SUTD), Singapore from 2014 to 2017.
Her research interests include data analytics,
massive data integration, distributed and block-
chain systems. She has served as a vice PC chair/associate editor for
VLDB’18, IEEE ICDE’18, VLDB’19, VLDB'20, SIGMOD’21, and ICDE’22.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

