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Vertical federated learning (VFL) is an emerging paradigm for cross-silo organizations to build more accurate

machine learning (ML) models. In this setting, multiple organizations (i.e., parties) hold the same set of samples

with different features. However, different parties may have redundant or highly correlated features, leading

to inefficient and ineffective VFL model training. Effective feature selection in VFL is therefore essential to

mitigate such a problem and improvemodel effectiveness, as well as computation and communication efficiency.

To this end, in this paper, we propose a federated feature selection framework, called FEAST, which leverages

conditional mutual information (CMI) to select more informative features while having low redundancy.

Furthermore, we design a communication-efficient method to reduce the information exchanged among the

parties while protecting the parties’ raw data. Extensive experiments on four real-world datasets demonstrate

that the proposed framework achieves state-of-the-art performance in terms of accuracy, communication and

computation costs.
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1 INTRODUCTION
Recent years have witnessed a growing interest in exploiting data from cross-silo organizations

to design more accurate machine learning (ML) [46, 59] models and provide better customer

services [16, 39, 66]. However, the raw data held by the distributed organizations cannot be shared

with each other due to privacy concerns. To this end, the federated learning (FL) [6, 41, 62] paradigm

is proposed, which enables cross-silo organizations to collaboratively build ML models without

disclosing their raw data. FL can be categorized into different settings based on the data partitioning.

In this paper, we consider the vertically-partitioned setting (aka. VFL), where the organizations
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Fig. 1. An illustration of VFL and overlapping features.

(aka. parties) hold the same set of samples but with different features, and only one party owns

the labels. We call the party which holds the labels as active party and the other parties passive
parties. VFL targets feature-level collaborative learning among parties; therefore, it is especially

useful for structured data analytics [10, 23, 44, 63], which has gained growing interests in the

database community, and can be adopted in a wide spectrum of applications, such as healthcare

and economics analytics.

Figure 1 illustrates a VFL example, where a bank (i.e., the active party) aims to build a model for

predicting whether it should approve a customer’s loan application by consolidating more features

from an insurance company (i.e., the passive party). Feature selection is particularly important

in VFL because the participating organizations may collect similar or highly correlated customer

information and process the information differently. For example, we can observe three types of

overlapping features in Figure 1. First, the ‘gender’ features of the two parties are duplicated. Second,

the ‘age’ feature at the bank and the ‘birth’ feature at the insurance company enfold the same

information. Third, the ‘income’ feature reflects a customer’s monthly salary, and the ‘package’

feature reflects the annual earnings. Although they are not the same, they are highly correlated.

These overlapping features are likely to contribute less useful information in totality and may affect

the model effectiveness, and computation and communication efficiency [9, 28, 58].

Feature selection in VFL has special requirements in two aspects. The first is privacy concerns.

For organizations such as the bank and insurance company in the above example, their data are

related to user privacy (e.g., income), and companies cannot undertake the risk of information

leakage. Therefore, the parties typically are not willing to share their raw data, leading the cen-

tralized feature selection methods hardly applicable in VFL. The second is communication and

computation efficiency. VFL naturally expands the feature dimensionality in the analytical tasks as

each organization nowadays may have hundreds of features. This poses a challenge to efficiency

since both the communication cost and computation time will be significant with more parties and

features.

While most recent works in VFL [12, 14, 18, 19, 36, 38] focus on model training and model

prediction, several open-source FL systems (e.g., FATE [35]) support several feature selection

algorithms for VFL, such as information value [26] and Pearson correlation coefficient [53]. These

algorithms however only consider the relationship between each feature and the label, without

examining the correlation among the features. As a result, they may select overlapping features

from different parties. One way to remove overlapping features in the VFL setting is to apply secure

schema matching techniques [15, 52]. However, they are still inadequate to identify correlated

features (e.g., income vs. package) and select informative features. Although it is possible to utilize
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advanced methods designed for the centralized scenario to identify the correlation among the

features, such as iteratively training models by adding or removing a subset of features and selecting

the features with the best performance [1, 2, 43], efficiency is a great concern since each training

requires intensive computation and incurs high communication overhead.

In this paper, we propose a communication-efficient Federated fEAture SelecTion (FEAST)

framework under the VFL setting. Our framework considers conditional mutual information (CMI)

based feature selection, which utilizes CMI to identify features that are highly correlated with

the label while having low redundancy between each other. However, enumerating all possible

feature combinations is inefficient. Therefore, we present a multi-round selection approach, where

a subset of features on a candidate party with the highest average CMI score is selected in each

round. Subsequently, the selected party transmits only necessary feature information to other

candidate parties for the CMI score calculation in the next round. To reduce the communication

cost and protect the selected party’s raw data, we devise a method that merges several features

into a statistical variable for transmission. Importantly, the statistical variables are sufficient for the

other parties to compute the CMI scores for feature selection. This leads to a solution that is not

only accurate but also efficient for feature selection in VFL.

Specifically, we make the following contributions in this paper.

• We formulate the federated feature selection problem based on conditional mutual informa-

tion (CMI) in VFL, which enables the parties to select more informative features with less

redundancy.

• We design a federated feature selection framework FEAST to solve the proposed problem.

FEAST generates statistical variables exchanged among parties instead of the selected features

to protect raw data. We propose a feature score normalization method to address the biased

selection trends introduced by statistical variables to improve accuracy.

• For computation and communication efficiency, we propose optimization strategies to reduce

the number of samples and features involved in feature selection, which significantly decrease

the computation and communication costs. We further provide a theoretical analysis of cost

trade-offs.

• We implement FEAST and conduct extensive experiments on four real-world datasets, namely

MIMIC III, PhysioNet Challenge 2012, Census-Income, and Nomao datasets, to evaluate its

performance. The results demonstrate that FEAST offers comparable accuracy to a centralized

algorithm and outperforms state-of-the-art filter-based baseline FATE-IV by up to 8.71% in

terms of the ROC_AUC score (with RF classifier), and is much more efficient than FATE in

terms of communication and computation costs.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3

reviews the preliminaries and formalizes the feature selection problem in VFL. Section 4 presents

the FEAST framework in detail. We evaluate the proposed framework in Section 5 and conclude in

Section 6.

2 RELATEDWORK
In this section, we summarize related work from three aspects: centralized feature selection,

federated feature selection and privacy-preserving schema matching.

Centralized feature selection. In centralized settings, data is collected together and can be

accessed easily. Existing feature selection works can be classified into the filter, wrapper, and

embedded methods. The filter methods score each feature by dispersion [65], relevance [30, 53]

or fairness [20, 51], and select features that exceed a pre-defined threshold. The wrapper meth-

ods [1, 2, 43] train different models by iteratively adding or removing features from a subset of

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 107. Publication date: May 2023.



107:4 Rui Fu, Yuncheng Wu,Quanqing Xu, & Meihui Zhang

features and find the optimal subset of features based on the model performance. The embedded

methods [24, 42] first implement feature embedding, and then regard it as a layer of the model and

obtain the coefficients of each feature during the model training. Specifically, filter methods are

efficient as they do not rely on heavy machine learning model training, but they are relatively less

accurate. In contrast, wrapper and embedded methods have better performance but are with higher

computational costs.

The mutual information (MI) based feature selection algorithm is a kind of filter method that

selects the features highly correlated with labels while having low redundancy between features

according to the MI scores. Specifically, the MI method measures the amount of information intro-

duced by a feature based on the entropy difference. MIM [30] is an early MI-based method, which

can select label-related features quickly. It however does not consider feature redundancy. MIFS [3]

introduces feature redundancy as a metric for feature evaluation, and its variant mRMR [47], as well

as other methods CIFE [33], JMI [61], JMIM [5], CMIM [17], and CFR [21], attempt to find a better

expression of the relevance and redundancy relationship. RCDFS [13] considers the correlation

between features and labels, redundancy between features, as well as the complementarity between

features, as a means to improve the performance of the feature selection. However, these centralized

methods cannot be directly applied in VFL setting as the features are held by different parties and

may be too sensitive for sharing.

Federated feature selection. Although VFL has gained traction in recent years, most works focus

on model training and prediction [12, 27, 36, 37, 62] or privacy preservation [14, 32, 34, 60], instead

of feature selection. There are few VFL feature selection approaches [31, 45] have been proposed,

which pay more attention to implementing privacy-preserving selection algorithms. However,

their communication and computation performance is less desirable. Note that the wrapper and

embedded methods may be too time-consuming and impractical for feature selection in VFL, due

to the heavy computation and communication costs. Li et al. [31] introduce a Secure Multiparty

Computation (MPC) based protocol for private feature selection based on the filter method. In

their protocol, the feature and label matrices are encrypted by secret sharing, and thus computing

scores under ciphertext is inefficient. Sakamoto et al. [45] design a secure algorithm based on fully

homomorphic encryption, which provides high privacy guarantees. Still, the strict encryption leads

to a huge overhead in practical tasks.

There are also several federated learning frameworks that have been proposed in recent years.

For example, Google has developed Tensorflow Federated [7], which builds the FL framework based

on Tensorflow for research purposes. Apache SystemDS [4] is a flexible and scalable ML system,

aiming to provide system infrastructure for this exploratory data science process on federated and

heterogeneous data sources. However, these frameworks mainly focus on horizontal FL, which are

not applicable to the VFL setting. PySyft [50] proposes a privacy preserving deep learning framework

that considers VFL, but the conventional ML algorithms like LR and GBDT are not supported.

Recently, WeBank releases an industrial-grade framework FATE for federated learning [35], which

supports feature selection with simple filter methods, such as information value [26] and Pearson

correlation coefficient [53] under VFL setting. However, these filter methods do not consider the

feature correlations among multiple parties. Thus, the selected features may be ineffective and

lead to undesirable performance. Additionally, FATE supports Lasso regression [42], which can

perform feature selection, but it requires multiple rounds of training, thus the communication and

computation cost are much higher.

Privacy-preserving schema matching. Schema matching is a well-studied problem to find

attributes or features that are semantically related. Scannapieco et al. [52] propose a protocol

for privacy-preserving schema matching between two parties that can have different privacy
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requirements by embedding the records of each of the two parties in a vector space. Cruz et al. [15]

develop an efficient privacy-preserving schema matching protocol using mutual information of

pair-wise attributes. These methods are able to identify overlapping features between parties with

the same or similar semantics, and can be used as a complementary pre-processing step before

feature selection. However, they have not been designed to identify correlated features and select

informative features for model training. Further, existing schema matching works mainly consider

the two-party setting, which is inefficient to handle the multi-party setting in VFL.

3 PRELIMINARY AND PROBLEM STATEMENT
In this section, we first introduce some preliminaries of the conditional mutual information (CMI)-

based feature selection in Section 3.1. Next, we formulate the research problem in Section 3.2.

3.1 Preliminary
3.1.1 Entropy and Conditional Entropy. In information theory, entropy is used to represent the

uncertainty of variables. In general, entropy increases when the state of uncertainty goes high.

From the perspective of information contents, the larger the entropy value is, the less information

the variable contains. The definition of information entropy is as follows [29]:

𝐻 (𝑌 ) = −
∑︁
𝑦∈𝑌

𝑝 (𝑦) log
2
𝑝 (𝑦), (1)

where 𝑝 (𝑦) is the probability of occurrence of the 𝑦-th possible value of the variable 𝑌 . Generally

speaking, the uncertainty of a variable can be affected by many factors. If all factors are determined,

the variable becomes a fixed value. That is, the uncertainty is equals to 0. In some cases, we expect

to obtain the uncertainty of a variable under certain conditions, which can be defined by conditional

entropy:

𝐻 (𝑌 |𝐹 ) =
∑︁
𝑓 ∈𝐹

𝑝 (𝑓 )
[
−
∑︁
𝑦∈𝑌

𝑝 (𝑦 |𝑓 ) log
2
𝑝 (𝑦 |𝑓 )

]
, (2)

where 𝑝 (𝑦 |𝑓 ) is the probability of 𝑦 under the condition 𝐹 = 𝑓 while 𝑓 is a possible value of the

conditional variable 𝐹 .

3.1.2 Mutual Information (MI) and Conditional MI. Given entropy 𝐻 (𝑌 ) and conditional entropy

𝐻 (𝑌 |𝐹 ), mutual information (MI), namely 𝐼 (𝑌 ; 𝐹 ), can be used to represent the uncertainty reduction
of one variable by knowing another variable, i.e.,

𝐼 (𝑌 ; 𝐹 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝐹 ). (3)

Note that mutual information can only express the relationship between a single factor and the

variable. However, as mentioned above, a variable is typically affected by multiple factors, and

there are also repeated, complementary, and promoting relationships among factors’ information

contents. To better deal with the relationship between multiple factors and variables, conditional

mutual information (CMI) is proposed. It represents the MI value under a given condition, which

can be defined as follows:

𝐼 (𝑌 ; 𝐹𝑖 |𝐹 𝑗 ) = 𝐻 (𝑌 |𝐹 𝑗 ) − 𝐻 (𝑌 |𝐹𝑖 , 𝐹 𝑗 )

=
∑︁
𝑦∈𝑌

∑︁
𝑓𝑖 ∈𝐹𝑖

∑︁
𝑓𝑗 ∈𝐹 𝑗

𝑝 (𝑦, 𝑓𝑖 , 𝑓𝑗 ) log2
𝑝 (𝑦, 𝑓𝑖 , 𝑓𝑗 )𝑝 (𝑓𝑗 )
𝑝 (𝑓𝑖 , 𝑓𝑗 )𝑝 (𝑦, 𝑓𝑗 )

,
(4)

where 𝐹𝑖 and 𝐹 𝑗 are two conditions for the variable 𝑌 . As a result, CMI can get the information

contents that 𝐹𝑖 provides to variable 𝑌 under the condition of 𝐹 𝑗 .

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 107. Publication date: May 2023.



107:6 Rui Fu, Yuncheng Wu,Quanqing Xu, & Meihui Zhang

3.1.3 CMI-based Feature Selection. The feature selection algorithm based on CMI is used to find

features that are highly correlated with label and yet, have low redundancy among the features.

These methods first calculate the CMI score of each feature, then rank and select the top-ranked

features. One of the state-of-the-art CMI algorithms is the JMI method [61]. Specifically, the score

of a candidate feature 𝐹𝑖 in the JMI method is defined as:

𝐽𝐽 𝑀𝐼 (𝐹𝑖 ) = 𝐼 (𝑌 ; 𝐹𝑖 ) −
1

|𝑆 |
∑︁
𝐹 𝑗 ∈𝑆

[
𝐼 (𝐹𝑖 ; 𝐹 𝑗 ) − 𝐼 (𝐹𝑖 ; 𝐹 𝑗 |𝑌 )

]
=

1

|𝑆 |
∑︁
𝐹 𝑗 ∈𝑆

𝐼 (𝑌 ; 𝐹𝑖 |𝐹 𝑗 ),
(5)

where 𝑆 is the set of selected features and 𝐹 𝑗 is an element in 𝑆 .

3.2 Problem Statement
We now formulate our federated feature selection problem. We consider a set of 𝑀 parties 𝑃 =

{𝑝0, 𝑝1, · · · , 𝑝𝑀−1} who aim to select a set of 𝑁 features by consolidating their respective datasets.

Specifically, we assume that each party 𝑝𝑘 owns a dataset D𝑘 ∈ R𝐿×𝑑𝑘 where 𝑘 ∈ {0, · · · , 𝑀 − 1},
and 𝐿 and 𝑑𝑘 denote the number of samples and features held by 𝑝𝑘 , respectively. Note that 𝐿 is the

same for all parties in VFL, and we assume that the parties’ samples are aligned beforehand [12, 14].

We denote the feature set of 𝑘-th party by F 𝑘 = {𝐹1, · · · , 𝐹𝑑𝑘 }. Without loss of generality, we

assume 𝑝0 is the active party who also holds the label of the target task (i.e., 𝑌 ) and is the initiator

of federated feature selection. The remaining parties, {𝑝1, · · · , 𝑝𝑀−1}, are the passive parties who
only hold their corresponding features.

The main goal of federated feature selection is to select𝑁 features that carry the most information

from all parties. Towards this end, the ultimate objective is to minimize the conditional entropy

with respect to the label information as follows:

argmin

𝑆𝑖⊆F𝑖

𝐻 (𝑌 |
𝑀−1
∪
𝑖=0

𝑆𝑖 ) s.t.

𝑀−1∑︁
𝑖=0

|𝑆𝑖 | = 𝑁, (6)

where 𝑆𝑖 is the selected features from party 𝑝𝑖 (i.e., a subset of F 𝑖
, which can be empty). However,

because there are many combinations for ∪𝑀−1
𝑖=0 𝑆𝑖 , Equation 6 would be computationally intractable

in real-world scenario. In order to make this problem computationally feasible, we first transform

Equation 4 as follows by adjusting the positions of its terms.

𝐻 (𝑌 |𝐹𝑖 , 𝐹 𝑗 ) = 𝐻 (𝑌 |𝐹 𝑗 ) − 𝐼 (𝑌 ; 𝐹𝑖 |𝐹 𝑗 ). (7)

According to Equation 7, we then transform our objective function Equation 6 by expanding the

conditional entropy as follows:

𝐻 (𝑌 |
𝑀−1
∪
𝑖=0

𝑆𝑖 ) = 𝐻 (𝑌 |𝑆0, ..., 𝑆𝑀−1) (8)

= 𝐻 (𝑌 |𝑆0, ..., 𝑆𝑀−2) − 𝐼 (𝑌 ; 𝑆𝑀−1 |𝑆0, ..., 𝑆𝑀−2)

= 𝐻 (𝑌 |𝑆0) − 𝐼 (𝑌 ; 𝑆1 |𝑆0) − ... − 𝐼 (𝑌 ; 𝑆𝑀−1 |
𝑀−2
∪
𝑖=0

𝑆𝑖 )

= 𝐻 (𝑌 ) − 𝐼 (𝑌 ; 𝑆0) − 𝐼 (𝑌 ; 𝑆1 |𝑆0) − ... − 𝐼 (𝑌 ; 𝑆𝑀−1 |
𝑀−2
∪
𝑖=0

𝑆𝑖 ).

Since𝐻 (𝑌 ) is constant, the entropy𝐻 (𝑌 | ∪𝑀−1
𝑖=0 𝑆𝑖 ) can be viewed as the accumulation of negative

values of conditional mutual information. Although Equation 8 is still computationally intractable

with the constrain of

∑𝑀−1
𝑖=0 |𝑆𝑖 | = 𝑁 , it divides the ultimate goal into a polynomial, where each term
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Fig. 2. An overview of the FEAST framework.

represents the MI values of the selected features. Based on this, we propose an iterative multi-round

feature selection solution to find an approximation of our objective (i.e., Equation 6) in a greedy

manner. Our method picks a party each time (without repetition) and selects a subset of features

from this party based on the features selected previously. We consider a party to be selected when

its (subset of) features have the largest average conditional mutual information under currently

selected features (i.e., maximizing each term in the polynomial). Formally, we denote the iterative

steps as follows:

𝑣 (𝑡 + 1) = argmax

𝑛

{
𝐼 (𝑌 ; 𝑆𝑛 | ∪𝑡

𝑖=1 𝑆
𝑣 (𝑖 ) )

|𝑆𝑛 |

}
s.t.

𝑀∑︁
𝑖=1

|𝑆𝑣 (𝑖 ) | = 𝑁, (9)

where 𝐼 (𝑌 ; 𝑆𝑛 | ∪𝑡
𝑖=1 𝑆

𝑣 (𝑖 ) ) is the term in Equation 8 and 𝑣 (𝑡) is the id of the party selected at 𝑡-th

time.

4 FEDERATED FEATURE SELECTION
In this section, we shall present our federated feature selection framework FEAST.

4.1 Overview
Figure 2 illustrates an overview of FEAST, which consists of a data pre-processing step and an

iterative feature selection step. During the selection process, we classify both parties and features

into two states: selected and candidate. We initialize all the parties and their features as the candidate

state. When a feature is selected, the states of the feature and the party where the feature is located

will be changed from the candidate state to the selected state. It is worth noting that the feature

state of different parties is known only to themselves. The detailed workflow is as follows.

Data pre-processing. In order to use the CMI methods to capture the information of selected

features, we transform each party’s continuous features into discrete features by binning [22, 57],

where the maximum number of bins is denoted as 𝐵. We support a variety of discretization methods

in FEAST, including both supervised and unsupervised learning-based approaches, such as the
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minimum description length principle (MDLP), ChiMerge, equal-frequency binning, and equal-

width binning [22, 57]. Meanwhile, we adopt stratified sampling, which aims to reduce the data size

while keeping the data distribution, so that both the size of transmitted data and computation time

in the iterative step can be reduced. Specifically, 𝑝0 conducts the sampling and passes the sampled

IDs and labels to other parties. Given that the subsequent processes are based on discrete features

and statistics, the original distribution of the dataset can be maintained to a large extent as long

as the stratified sampling is performed within a reasonable range, then it can retain a satisfactory

accuracy of the subsequent results. We will analyze the required number of samples in Section 4.6

and evaluate the impact of stratified sampling on the accuracy in Section 5.

Recall that our objective is to select 𝑁 features from all parties. In the iterative selection step,

the parties will collaboratively execute the selection in 𝑇 rounds till 𝑁 features are selected.

The workflow in each round includes three stages: statistical variable generation, feature score

calculation, and feature ranking and selection.

Statistical variable generation. The selected party 𝑝𝑘 in the previous round
1
computes some

statistical information based on its selected features and forwards it to the existing candidate

parties. Given the statistical information, the candidate parties can calculate their feature scores

in next stage for feature selection. To reduce the communication cost and avoid transmitting the

raw feature values, we let 𝑝𝑘 merge its selected features and generate a statistical variable 𝑉 𝑡
. In

particular, 𝑉 𝑡
is a combination of selected features’ values, reflecting the distribution of combined

features. We shall present the feature merging in the next section.

Feature score calculation. Each candidate party receives the latest statistical variable 𝑉 𝑡
and

combines it with the statistical variables 𝑉 2 ∼ 𝑉 𝑡−1
in the previous rounds

2
to calculate the scores

of all candidate features it holds. We will describe the calculation in Section 4.3. Finally, each

candidate party sends the top-ranked local feature scores to the active party 𝑝0.

Feature ranking and selection. After receiving the feature scores from all candidate parties, the

active party decides on which candidate party to be picked and selects a subset of its top-ranked

features in each round 𝑡 . In addition, the active party notifies the candidate parties to delete some

tail features, reducing the overall cost. We will elaborate on the selection strategy in Section 4.4.

4.2 Statistical Variable Generation
Recall that in each round 𝑡 , each candidate party needs to compute the feature scores given the

selected features in previous rounds using the CMI method. A naive way is to let the selected party

transmit the selected features directly. However, this will result in high communication cost and

reveal the selected party’s sensitive raw data, which are unacceptable. To mitigate this problem,

we propose a method that merges the selected features into a new variable 𝑉 𝑡
, which contains all

the information that the candidate parties need in CMI calculation. The statistical variable will be

transmitted to the candidate parties instead of the raw data.

Assume that the selected party in the previous round is 𝑝𝑘 , who initiates the feature selection

process in the current round 𝑡 . Let |𝑆𝑘 | be the number of selected features in 𝑝𝑘 and𝑚 be the merge

parameter. The selected party 𝑝𝑘 randomly divides the selected features in 𝑝𝑘 into

⌈
|𝑆𝑘 |
𝑚

⌉
feature

groups, each of which consists of at most𝑚 features. After that, 𝑝𝑘 takes each feature group as a

unit and re-organizes each feature group to obtain

⌈
|𝑆𝑘 |
𝑚

⌉
merged tables, and each merged table has

at most𝑚 factors. Figure 3 gives an example, where UID denotes user ID. Figure 3(a) shows the

1
This stage starts from 𝑡 = 2.

2
When 𝑡 = 1, there are no selected features, so each candidate party only uses labels to calculate the feature score based on

mutual information (Equation 3).
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(a) Original selected features (b) Merged tables (c) Formed𝑉 𝑡

Fig. 3. An illustration of statistical variable 𝑉 𝑡 generation.

original selected features with |𝑆𝑘 | = 5. Given𝑚 = 3, the selected features are randomly divided

into

⌈
5

3

⌉
= 2 feature groups, say 𝐺1 = {𝐹1, 𝐹2, 𝐹3} and 𝐺2 = {𝐹4, 𝐹5}. The merged table in each

group is computed by taking projection (with duplicate elimination) from the original table as

shown in Figure 3(b). Take 𝐺1 as an example. We project on 𝐹1, 𝐹2, 𝐹3 from the table in Figure 3(a)

and obtain 6 valid combinations associated with a sequential GID column as the elements in the

resulting merged table. Similarly, we can obtain the merged table for 𝐺2. We treat each feature

group as a new combined feature and transform the original table, e.g., Figure 3(a), to a new table

with

⌈
|𝑆𝑘 |
𝑚

⌉
features, e.g., Figure 3(c), according to the association between merged features and

the original features. We denote the newly transformed table as the statistical variable 𝑉 𝑡
. An

important aspect is that 𝑉 𝑡
is sufficient for the candidate parties to calculate the feature scores,

which will be presented next.

4.3 Feature Score Calculation
Now we present how each candidate party uses the statistical variables to calculate the scores of

their local features. Let 𝑉 be the union of received statistical variables, i.e., 𝑉 = ∪𝑡
𝛼=2𝑉

𝛼
, which

contains all the selected features in 𝑡 rounds. We use𝑉𝑗 ∈ 𝑉 to denote the 𝑗-th feature in𝑉 . Formally,

we calculate the feature score as:

𝐽𝐹𝐸𝐴𝑆𝑇 (𝐹𝑖 ) =
1

|𝑉 |
∑︁
𝑉𝑗 ∈𝑉

𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ). (10)

We use the average feature scores to approximate the CMI values of the subset expressed in

Equation 9. In other words, we choose the party with the largest average feature score as the

selected party.

Intuitively, we expect the score to measure the candidate features in terms of the correlation

with label and the redundancy with existing information, regardless of the size (i.e., the number

of elements) of selected features. However, the score in Equation 10 is not independent of the

selected feature size. Indeed, as noted in [40, 48, 49], estimating the mutual information naively

with empirical probabilities can lead to a bias toward large domain sizes. Since each𝑉𝑗 is generated

by several features, and there are many potential combinations among features, the domain size

of 𝑉𝑗 often varies widely. Equation 10 favors the feature 𝑉𝑗 with a large number of elements. In

other words, it weighs more on the 𝑉𝑗 with a large size when computing the feature score and thus

affects the feature selection. We give an example as follows to illustrate this problem.
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(a) |𝑉𝑗 | = 10 (b) |𝑉𝑗 | = 100 (c) |𝑉𝑗 | = 1000

Fig. 4. Box plots of 𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ) with different size of 𝑉𝑗 .

Example 1. Given a target variable 𝑌 ∈ {0, 1} and a variable 𝐹𝑖 ∈ [0, 1]. We randomly construct
three variables 𝑉𝑗 with the number of elements 10, 100, and 1000 to compute 𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ). Through one
hundred experiments, we plot the box plots of three 𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ), as shown in Figure 4. The mean values
of 𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ) with different sizes of 𝑉𝑗 are 0.0074, 0.0639 and 0.2923 respectively. Intuitively, since 𝑉𝑗 is
constructed randomly and independently of label 𝑌 and variable 𝐹𝑖 , the values of 𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ) should be
close. However, in practice, the values of 𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ) vary by orders of magnitude. This suggests that
the bias introduced by the large domain also occurs in our scenario.

Feature score normalization. To reduce the effect of size of𝑉𝑗 on the feature scoring, we propose

to normalize Equation 10 with symmetric uncertainty (SU) [54, 64]. Specifically, we first convert

the CMI formula into an expression for information entropy:

𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ) = 𝐼 (𝑌, 𝐹𝑖 ;𝑉𝑗 ) − 𝐼 (𝑉𝑗 ; 𝐹𝑖 )
= 𝐻 (𝑌,𝑉𝑗 ) + 𝐻 (𝐹𝑖 ) − 𝐻 (𝑌, 𝐹𝑖 ,𝑉𝑗 ) − 𝐼 (𝑉𝑗 ; 𝐹𝑖 )
= 𝐻 (𝑌,𝑉𝑗 ) + 𝐻 (𝑉𝑗 , 𝐹𝑖 ) − 𝐻 (𝑉𝑗 ) − 𝐻 (𝑌, 𝐹𝑖 ,𝑉𝑗 ).

(11)

Then, we re-define part of our feature score as follows:

𝑆𝑈 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ) =
𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 )

𝛼 ·
[
𝐻 (𝑌,𝑉𝑗 ) + 𝐻 (𝑉𝑗 , 𝐹𝑖 ) − 𝐻 (𝑉𝑗 )

] , (12)

where [𝐻 (𝑌,𝑉𝑗 ) + 𝐻 (𝑉𝑗 , 𝐹𝑖 ) − 𝐻 (𝑉𝑗 )] is the guarantee of the normalization and 𝛼 =
√︁
|𝑌, 𝐹𝑖 ,𝑉𝑗 |

is a factor to further restrict the effect of |𝑉𝑗 |. Equation 12 normalizes the value of 𝐼 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ) to
range [0,1], mitigating the bias. A larger 𝑆𝑈 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ) indicates higher correlation with 𝑌 and less

redundancy with 𝑉𝑗 .

Finally, the normalized feature score is defined as:

𝐽𝐹𝐸𝐴𝑆𝑇 (𝐹𝑖 ) =
1

|𝑉 |
∑︁
𝑉𝑗 ∈𝑉

𝑆𝑈 (𝑌 ; 𝐹𝑖 |𝑉𝑗 ). (13)

Note that in the first round, there are no selected features, at which point we use the MI method

(See Equation 3) for the initial selection. In subsequent round 𝑡 , each candidate party only needs to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 107. Publication date: May 2023.



FEAST: A Communication-efficient Federated Feature Selection Framework for Relational Data 107:11

Fig. 5. The process of generating feature scores. The solid line represents the computation process and the
dashed line represents the selection process. We use white circles to represent the ones with values close to 0
(or equal to 0).

compute 𝐽𝐹𝐸𝐴𝑆𝑇 (𝐹𝑖 ) of local features with respect to the selected features in 𝑉 . Finally, it ranks the

candidate features based on the scores and sends the ranked feature scores to the active party.

Overlapping feature deletion. According to Equation 13, we find that the each feature’s score

is the average of |𝑉 | SU values. Therefore, when the number of selected features is large, there is

likely to be a feature that contains a lot of information but overlaps with the previous statistical

variables. Theoretically, we should not select the feature that is highly similar or even identical

to the already selected features. However, since it contains a large amount of information, the SU

values obtained from the calculation with other statistical variables are large. Thus, the value of

𝐽𝐹𝐸𝐴𝑆𝑇 is large, leading to the feature being mis-selected.

To prevent such a situation, we design an overlapping feature deletion strategy in this phase. As

shown in Figure 5, since 𝑆𝑛
3
is very close to 0, we regard the feature 𝐹𝑛 as an overlapping feature that

is very similar to 𝑉3. We will delete feature 𝐹𝑛 and exclude its corresponding 𝑆𝑛 (i.e., 𝐽𝐹𝐸𝐴𝑆𝑇 ) from

being transmitted to the active party. To this end, we identify two types of overlapping features,

i.e., identical features and similar features. Identical features are easy to discover as they have at

least one SU value equal to 0. For similar features, their SU values are close to 0, and differ from

other SU values by orders of magnitude. In this paper, we define the features whose SU values are

less than one-tenth of the median as similar features. As will be shown in experiments, deleting

overlapping features can reduce the computation time of the subsequent rounds without degrading

the feature selection accuracy.

4.4 Feature Ranking and Selection
In this stage, the active party aims to select �̂� 𝑡

features in round 𝑡 (as illustrated in Figure 6). Note

that �̂� 1 = 𝑁 , which is the total number of features to be selected during the whole process. Let

𝑁 𝑡
sum

be the total number of ranked feature scores received from all candidate parties. Given 𝑁 𝑡
sum

feature scores, the active party 𝑝0 first ranks them globally. For the top features in the ranking list,

i.e., feature’s rank in [1, �̂� 𝑡 ], these are the features that may be selected in this round. For the tail

features (the feature size is determined by the active party), the active party can (optionally) notify

the candidate parties to prune them out. The rationale is two-fold. On the one hand, these features

are often poorly correlated with the label or too similar to the previously selected features, which

can hardly provide useful information. On the other hand, the candidate parties can reduce the

computation cost in subsequent rounds.
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Fig. 6. The process of feature ranking and selection. The solid line represents the ranking process and the
dashed line represents the selection process. We use different shades of green circles to indicate the features
from different parties, and orange circles to denote the features that are selected.

Note that the globally top-ranked �̂� 𝑡
features usually belong to multiple parties, i.e., �̂� 𝑡 =∑

𝑘∈𝑃𝑐 𝑁
𝑡
𝑘
, where 𝑁 𝑡

𝑘
is the number of top-ranked features held by party 𝑝𝑘 and 𝑃𝑐 is the set of

candidate parties. Therefore, we let the active party only select features from one candidate party

in each round 𝑡 . More specifically, the active party 𝑝0 first groups the top-ranked �̂�
𝑡
features by the

party; then, 𝑝0 calculates the average feature score of the features on each candidate party 𝑝𝑘 ; and

finally selects the candidate party who has the largest average score as the selected party in this

round. We denote the number of top-ranked features the selected party holds as 𝑁 𝑡
. These features

are also marked as selected features in round 𝑡 . Finally, the selected party sets �̂� 𝑡+1 = �̂� 𝑡 − 𝑁 𝑡
, i.e.,

the remaining features to be selected.

4.5 Privacy Protection Analysis
In the FEAST framework, the information transmitted among the parties is mainly the statistical

variable set 𝑉 = ∪𝑡
𝛼=2𝑉

𝛼
, which consists of the selected features in 𝑡 rounds. Notice that 𝑡 ≤ 𝑀

because each party is selected at most once in FEAST, where𝑀 is the number of parties. Assume

that there is a curious party 𝑝𝑥 , who receives a statistical variable 𝑉 𝛼 = {𝑉 𝛼
1
, · · · ,𝑉 𝛼

𝑎 } from 𝑝𝑘 ,

where 𝑎 =

⌈
|𝑆𝑘 |
𝑚

⌉
is the number of feature groups divided by 𝑝𝑘 during the statistical variable

generation stage. 𝑝𝑥 aims to infer 𝑝𝑘 ’s sensitive feature information from 𝑉 𝛼
. Since the statistical

variable elements𝑉 𝛼
1
, · · · ,𝑉 𝛼

𝑎 are calculated from different sets of features held by 𝑝𝑘 , the elements

are independent. Without loss of generality, we focus on a single element𝑉 𝛼
𝑖
(𝑖 ∈ [1, 𝑎]) and analyze

the probability of finding the correct mapping between 𝑉 𝛼
𝑖
and the original features after binning

on 𝑝𝑘 .

Theorem 4.1. Given a statistical variable element 𝑉 𝛼
𝑖
that consists of information from𝑚 selected

features, where each feature is categorized with 𝐵 bins, the probability of inferring the correct mapping
between 𝑉 𝛼

𝑖
and the original feature values is 1

𝐴(𝐵𝑚,𝑑 ) , where 𝑑 is the number of distinct values in 𝑉 𝛼
𝑖
.

Proof. Since 𝑉 𝛼
𝑖
consists of𝑚 features and each feature is composed of 𝐵 bins, there could be

𝐵𝑚 possible combinations or possible values of the𝑚 features. Note that there are only 𝑑 distinct

values in 𝑉 𝛼
𝑖
. From the perspective of 𝑉 𝛼

𝑖
, the 𝑑 values can be selected from the 𝐵𝑚 values. Thus,

the number of possible solutions can be expressed as:

𝑁𝑐𝑜𝑚𝑏 = 𝐵𝑚 · (𝐵𝑚 − 1) · ... · (𝐵𝑚 − 𝑑 + 1) = 𝐴(𝐵𝑚, 𝑑), (14)

where 𝐴 denotes permutation. Consequently, the inference probability of the mapping between 𝑉 𝛼
𝑖

and the original feature values is
1

𝐴(𝐵𝑚,𝑑 ) . □
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Notice that the features held by 𝑝𝑘 are invisible to 𝑝𝑥 ; thus, 𝑝𝑥 does not know the number of

bins each feature is split into, though the number of bins of some categorical features is less than 𝐵.

Nonetheless, even if the number of bins is known to 𝑝𝑥 , the inference probability is still extremely

small. Take 𝑉 𝑡
1
in Figure 3 as an example. It is generated from 𝐹1, 𝐹2, 𝐹3, where 𝐹1 = {4, 5, 6},

𝐹2 = {2, 3}, 𝐹3 = {6, 7, 8}. Thus, there are 3 × 2 × 3 = 18 combinations of the three features if the

number of bins for each feature is known to 𝑝𝑥 . Moreover, since there are 6 distinct values in 𝑉 𝑡
1
,

the number of possible solutions 𝑁𝑐𝑜𝑚𝑏 = 𝐴(18, 6) = 13366080. In consequence, the probability

of correctly inferring the original feature values is small even for this toy example with very few

values.

In general, the larger 𝐵 or𝑚, the more number of possible combinations in Equation 14 and

the less the inference probability are, and therefore the better privacy protection each party can

obtain. However, as will be analyzed in Section 4.6, when 𝐵 or𝑚 becomes large, the communication

cost also increases greatly (see Equation 18). We shall discuss the choice of 𝐵 and𝑚 in the next

subsection.

4.6 Communication Cost Analysis
We now discuss how the maximum number of bins 𝐵 and the merge parameter 𝑚 affects the

communication cost. Notice that if we do not apply feature merging or stratified sampling, the

communication cost of transmitting the selected features for 𝑝𝑘 is:

𝐶𝑜𝑠𝑡 (𝑆𝑘 ) = 𝐿 · |𝑆𝑘 |, (15)

where 𝐿 is the number of original rows. With FEAST, we manage to reduce the communication

cost to:

𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) = 𝐿′ ·
⌈
|𝑆𝑘 |
𝑚

⌉
, (16)

where 𝐿′ is the number of rows after sampling. In FEAST, we dynamically decide the required

number of rows 𝐿′ as follows. To compute the feature score, we need to calculate the joint probability

of 𝑌 , 𝐹𝑖 , 𝑉𝑗 . Recall that with feature merging, we generate a group of combined features, where

each combined feature 𝑉𝑗 contains at most𝑚 original features. Meanwhile, there are at most 𝐵

values for a candidate feature 𝐹𝑖 and each of the𝑚 selected feature in 𝑉𝑗 , and |𝑌 | values for the
label 𝑌 . Then, the maximum number of possible combinations of 𝑌 , 𝐹𝑖 and 𝑉𝑗 is 𝐵

𝑚+1 · |𝑌 |. As a
result, to have a sufficient amount of data for calculating the feature scores in the following stage,

it is required that 𝐿′ in Equation 16 to satisfy the following inequation:

𝐿′ ≥ 𝐵𝑚+1 · |𝑌 |. (17)

As will be shown in Section 5.4, this dynamic stratified sampling method can significantly reduce

the communication cost without degrading accuracy. Besides, 𝐿′ should be no larger than the

original number of samples in the datasets, i.e., 𝐿′ ≤ 𝐿. Therefore, the lower bound of 𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) is :

𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) = min

{
𝐵𝑚+1 · |𝑌 | ·

⌈
|𝑆𝑘 |
𝑚

⌉
, 𝐿 ·

⌈
|𝑆𝑘 |
𝑚

⌉ }
. (18)

Case 1. The first case is 𝐿′ ≤ 𝐿, where 𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) = 𝐵𝑚+1 · |𝑌 | ·
⌈
|𝑆𝑘 |
𝑚

⌉
. Since 𝐵, |𝑌 | and |𝑆𝑘 | are

constants, it can be regarded as a function of𝑚:

𝑓 (𝑚) = 𝐵𝑚+1 · |𝑌 | ·
⌈
|𝑆𝑘 |
𝑚

⌉
, (19)
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and the extreme point is at:

𝑚 =
1

ln𝐵
. (20)

That is, 𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) will gradually increase when𝑚 is greater than 1

ln𝐵
. The smaller the𝑚, the smaller

the 𝐶𝑜𝑠𝑡 (𝑉 𝑡 ).

Case 2. The second case is 𝐿′ > 𝐿, where 𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) = 𝐿 ·
⌈
|𝑆𝑘 |
𝑚

⌉
. In this case, all the samples in the

original datasets will be used for statistical variable generation. Moreover, the larger the𝑚, the smaller
the 𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) because fewer merged feature groups are generated.

Choice of 𝐵 and𝑚. By analyzing Theorem 4.1 and Equation 18, we notice that there is a trade-off

between the 𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) and the inference probability for privacy protection. When the value of 𝐵 or

𝑚 increases, the level of privacy protection increases, but the communication cost also grows. Note

that 𝐵 determines the maximum number of bins. Usually, the larger the 𝐵, the more information

can be preserved about the original feature. In practice, we set 𝐵 ≥ 8 so that we can extract effective

statistical information. Similarly, although smaller𝑚 will generate more merged feature groups

(i.e.,

⌈
|𝑆𝑘 |
𝑚

⌉
), resulting a transformed table with more columns. The sampling number 𝐿′ is also

determined by𝑚 (Equation 17). Therefore, smaller𝑚 will reduce 𝐿′ to a large extent. However,𝑚

cannot be too small. If𝑚 is too small, other candidate parties may easily infer the original feature

values through the transmitted statistical variable. For example, if𝑚 = 1, it is equivalent to sending

the original table, which is apparently unacceptable. In this paper, we set𝑚 = 3 by default and will

experimentally evaluate the impact of 𝐵 and𝑚 on the communication cost in Section 5.

5 EXPERIMENTS
In this section, we shall present the experimental evaluation of FEAST and analyze its performance

against state-of-the-art baselines on four real-world datasets.

5.1 Experiment Setup
We implement the proposed framework in Python

3
and conduct the experiments using 4 servers

on a cloud platform. Each cloud server is equipped with a 3rd Gen Intel (R) Xeon (R) scalable

processor@2.7GHz (2 vCPU), 8GB RAM, and 1Mbps bandwidth. Specifically, we set the number

of parties to 4, and use one server as the active party while the remaining servers as the passive

parties.

Datasets and models.We use four real-world datasets, MIMIC III
4
, PhysioNet Challenge 2012

5
,

Census-Income
6
, and Nomao

7
for the evaluation.

• MIMIC III. The dataset contains more than 40,000 patients’ medical data. It consists of 26 tables,

and we use the data from the Admissions table to predict whether a patient in the Medical

Intensive Care Unit (MICU) would be readmitted to the hospital. The resulting dataset contains

8,523 instances with 38 features.

• PhysioNet Challenge 2012. The dataset contains records of patients in Intensive Care Units (ICU).

We use the medical features in this dataset, such as respiratory rate, glucose etc., to predict

whether the patient will survive. The resulting dataset contains 12,000 instances with 41 features.

3
The source code of FEAST is available at https://github.com/furuifr/FEAST.

4
https://mimic.mit.edu/

5
https://paperswithcode.com/dataset/physionet-challenge-2012

6
https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)

7
https://archive.ics.uci.edu/ml/datasets/Nomao
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• Census-Income. The dataset contains census data extracted from the 1994 and 1995 Current

Population Surveys. We use the demographic and employment related features to predict whether

an adult’s income is above $50K. The resulting dataset contains 199,523 instances with 41 features.

• Nomao. The dataset contains 34,465 instances and 120 features, which consists of 89 continuous

and 31 categorical features (including the attributes ‘label’ and ‘id’).

We randomly split the datasets vertically into multiple partitions as the data held in different

parties, and only the active party have labels. Moreover, to simulate the scenario with feature

redundancy illustrated in Figure 1, we randomly add 4-16 overlapping features from other parties

to each party.

To evaluate the performance of feature selection, we utilize five classifiers, logistic regression

(LR) [25], support vector machines (SVM) [56], random forest (RF) [8], XGBoost [11], and neural

network (NN) [55] to test the selected features.

Baselines. We compare our method with six baselines, where the first two baselines are from

FATE [35], an industrial-grade open-source framework for federated learning developed byWeBank

(a digital bank). FATE provides a distributed secure computing framework that supports various

feature selection algorithms. We describe the baselines as follows.

• FATE-IV. We adopt FATE’s information value (IV) [26] feature selection algorithm, which is the

most commonly used filter method in FATE, as the first baseline. It calculates the IV scores that

are only related to the label information and selects the corresponding top-𝑁 features.

• FATE-Lasso. We use the lasso regression algorithm in FATE as the second baseline. It enables

automatic feature selection by training a lasso regression model, where the informative features

tend to have non-zero coefficients. In the experiments, we adjust the hyper-parameters of the

model to obtain a specific number of features with non-zero coefficients for a fair comparison.

• CFEAST. The third baseline is FEAST in centralized setting. In this setting, we transfer all datasets

directly to the active party and select features using a centralized method, i.e., using a variant of

Equation 13 (replacing 𝑉𝑗 with the selected feature 𝐹 𝑗 ) to get the feature scores. We adopt this

baseline to illustrate that the accuracy of FEAST in VFL is very close to that in centralized cases,

demonstrating FEAST’s effectiveness.

• MI. In the fourth baseline, we use the MI method (Equation 3), which selects features with top-𝑁

MI scores among all features.

• Random.We randomly select a party and randomly select one feature from the remaining features

in this party at each round as the fifth baseline.

• Raw. The sixth baseline is based on the original feature set, which does not contain overlapping

features, and we do not use any feature selection method.

Metrics.We employ three metrics to measure the performance:

• Accuracy. We aggregate the selected features in one party after feature selection, train centralized

classifiers on these features, and use ROC_AUC to measure the accuracy of the classifiers.

• Computation cost.We evaluate the time required to complete thewhole federated feature selection

process for all the approaches.

• Communication cost. We examine the total amount of data transferred during the whole federated

feature selection process.

5.2 Comparison with the Baselines
We evaluate FEAST and compare it with the baselines using the three metrics on accuracy and

efficiency. We conduct experiments using four parties for accuracy and two parties for cost, and set

𝑚 = 3 and 𝐵 = 8 (equal-frequency binning) by default.
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(a) Logistic Regression (b) Random Forest

(c) XGBoost (d) Neural Network

Fig. 7. Comparison with baseline with respect to accuracy on MIMIC.

(a) Logistic Regression (b) Random Forest

(c) XGBoost (d) Neural Network

Fig. 8. Comparison with baseline with respect to accuracy on PhysioNet.

Accuracy. We evaluate the classifier accuracy on the four datasets, as shown in Figure 7, Figure 8,

Figure 9 and Figure 10, respectively. We only present the results of LR, RF, XGBoost and NN due to

the space constraint. The results of SVM exhibit a similar trend.

We make the following four key observations. First, FEAST outperforms the FATE-IV and MI

baselines significantly. The reason is that the two filter-based baselines fall into repeated selection,

resulting in low classification accuracy. Take the MIMIC dataset for example. FEAST is superior to

FATE-IV by up to 3.7% (with LR classifier at 𝑁 = 7), 8.71% (with RF classifier at 𝑁 = 7), 6.93% (with

XGBoost classifier at 𝑁 = 20) and 6.3% (with NN classifier at 𝑁 = 24), respectively. A noteworthy
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(a) Logistic Regression (b) Random Forest

(c) XGBoost (d) Neural Network

Fig. 9. Comparison with baseline with respect to accuracy on Census.

(a) Logistic Regression (b) Random Forest

(c) XGBoost (d) Neural Network

Fig. 10. Comparison with baseline with respect to accuracy on Nomao.

aspect is that, as the number of selected features 𝑁 increases, these feature selection methods would

eventually reach their maximum model accuracies. However, the numbers of selected features that

reach the maximum accuracy of these methods are very different. For instance, regarding the RF

model on the MIMIC dataset, FEAST can reach 74.13% accuracy with 26 features; while the numbers

for FATE-IV and MI need 31 features for 74.12% accuracy and 44 features for 73.61% accuracy,

respectively. In practice, federated feature selection aims to select fewer important features while

achieving high model accuracy. In addition, when 𝑁 is large (i.e., 𝑁 ≥ 30 on MIMIC), the accuracy
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gap between FEAST and the FATE-IV (or MI) method is small. This is expected because most of the

informative features are already selected, leading to similar accuracy. An extreme case is that 𝑁

equals the number of total features in all parties, where the accuracy of the two methods will be

the same. However, when 𝑁 is small, FEAST can select more informative features than FATE-IV

and MI. This is especially useful in VFL because the number of total features is expanded, and the

parties prefer to include only informative features while keeping the model concise.

Second, regarding the comparison to the Lasso baseline, since it is impractical to obtain all possible

𝑁 by adjusting the hyper-parameters, we only sampled a few 𝑁 to show the trend of Lasso. We

observe that Lasso achieves comparable accuracy to FEAST or even higher accuracy because it

can learn feature correlations in the regression model. Nevertheless, it requires multiple rounds of

federated learning training, incurring much higher computation and communication costs.

Third, FEAST is comparable to the centralized method CFEAST. It is worth noting that CFEAST

is superior to FEAST in most cases, but there are some cases where the accuracy of FEAST exceeds

those of CFEAST. We attribute this situation to two reasons. For one thing, our workflow is based

on a greedy algorithm, and each step is locally optimal, but not necessarily globally optimal. For

another, the CMI methods only measure the increment of information entropy, which cannot

fully represent the real importance of the feature. We can find out that, the classifier’s accuracy

improves steadily as the number of selected features increases. Especially in the early stage, each

newly selected feature can provide more information gain, which improves the classifier accuracy

rapidly. However, as the selected features further increase, the growth rate of accuracy slows down

gradually and eventually plateaus.

Fourth, we can see that Random performs the worst in most cases because it has no guarantee

to select informative features. Conversely, the Raw baseline achieves the highest accuracy under

most settings since it utilizes all the features for training the model. However, we notice that when

training with some models (especially NN model), there are several cases in which its accuracy is

lower than the feature selection methods (e.g., FEAST). For example, on the PhysioNet dataset with

NN model, the raw baseline’s accuracy is 83.07%, while FEAST achieves up to 85.17% when 𝑁 = 13.

Computation cost. Figure 11(a) and Figure 12(a) compare the computation cost of FEAST, FATE-IV,

FATE-Lasso with log scale on the MIMIC and Nomao datasets, respectively. We find that FATE-IV

takes the same amount of time regardless of how many features are selected, which is because the

IV-based algorithm calculates the IV values for all features and selects the top-𝑁 features. However,

FATE-Lasso consumes different time with regard to different 𝑁 . The reason is that in order to get

different numbers of non-zero parameters, we need to set different hyper-parameters, which will

cause the lasso regression model to reach convergence in different rounds. Meanwhile, the time

of FEAST increases as the number of selected features increases. The reason is that it iteratively

selects features and calculates on the selected features.

We note that FATE-Lasso’s computation time is much higher than FATE-IV and FEAST. This is

because the model training in FATE-Lasso needs multiple rounds of calculation, and it adopts cryp-

tographic techniques in the calculation. For FATE-IV, though it does not utilize any cryptographic

techniques, its computational cost is still higher than FEAST. This is because we employ two feature

deletion strategies that effectively remove non-informative features and utilize stratified sampling

in FEAST, which greatly reduces the computational cost while achieving higher model accuracy.

Communication cost. Figure 11(b) and Figure 12(b) report the communication cost of the three

methods with log scale on the MIMIC and Nomao datasets, respectively. Similar to the computa-

tional cost analysis, FATE-IV has constant communication costs regarding different 𝑁 because

the transmitted data is independent of the selected features. Also, Lasso incurs a much higher

communication cost as it requires model training with multiple rounds and uses cryptographic
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(a) Computation cost (b) Communication cost

Fig. 11. Comparison with baselines on MIMIC.

(a) Computation cost (b) Communication cost

Fig. 12. Comparison with baselines on Nomao.

schemes to protect the transmitted information. Moreover, FEAST consumes less communication

cost than FATE-IV (which does not use cryptographic techniques) from two aspects. First, FEAST

combines multiple features into statistical variables, resulting in less transmitted information among

parties. Second, FEAST requires fewer data samples to calculate the feature scores with the dynamic

stratified sampling method, which further reduces the communication costs.

5.3 Effects of Tuning Parameters
Now we analyze the impacts of different parameter configurations on the performance of our

framework. In this set of experiments, we vertically split the dataset into two partitions for two

parties. Again, the features in the two partitions are partially overlapped.

Varying the number of bins (B). 𝐵 is a parameter for discretizing variables, which determines the

granularity of features after binning. We set𝑚 = 3 by default and vary 𝐵 in {2, 5, 8, 10} to evaluate

the impact of 𝐵. Figure 13 shows the results.

We can see from Figure 13(a) that the accuracy of the RF classifier is undesirable when 𝐵 = 2.

The reason is that, given a small 𝐵, each bin has a large range of values and a lot of information

will be lost. For example, people have ranged in age from 1 to 80, and age are only discretized into

two groups [1, 40] and [41, 80] when 𝐵 = 2, which means that a five-year-old child falls into the

same category with a 35-year-old adult. In contrast, the classifier’s accuracy increases significantly

when 𝐵 > 2, because more bins can capture more fine-grained feature information. We note that,

the accuracy with 𝐵 = 8 and 𝐵 = 10 are very similar (e.g., with only 0.001 level of fluctuation). The

reason is that 8 bins are sufficient to capture the feature information, and the accuracy fluctuation

is caused by the randomness introduced in the training process.

In terms of the computation cost and communication cost, they also increase as 𝐵 goes up, as

shown in Figure 13(b). This is expected, as the larger the number of bins, the more combinations of

features, and thus the bigger the statistical variables 𝑉 𝑡
, resulting in more communication cost. In

addition, as mentioned in Section 4.6, 𝐵 affects the number of required samples (see Equation 17).

That is, the size of𝑉 𝑡
will become larger as 𝐵 increases, which further increases the communication
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(a) Accuracy of RF (b) Cost Comparison

Fig. 13. Impacts of 𝐵 on PhysioNet.

(a) Accuracy of RF (b) Cost Comparison

Fig. 14. Impacts of𝑚 on PhysioNet.

cost. The computation cost shows a similar trend. The reason is that, when the statistical variable

increases with 𝐵, not only the communication process takes more time, but also more samples need

to be traversed for calculating the feature scores, resulting in a higher computation cost.

Varying the merge parameter (𝑚). As discussed in Section 4.2, the merge parameter can affect

the cost and the protection of raw data. In this set of experiments, we set 𝐵 = 8, and vary𝑚 in {2, 3,

4, 5} to evaluate its impact. The results are illustrated in Figure 14.

In terms of classifier accuracy, we can see from Figure 14(a) that the ROC_AUC scores are stable

under different𝑚. This is because our framework essentially considers the relationship between

each candidate feature and all selected features. Thus, the way we group the features has little

impact on the classifiers’ accuracy.

Regarding the computation cost (see Figure 14(b)), it increases as𝑚 increases. The reason is

twofold. First, the number of required samples 𝐿′ increases when𝑚 becomes large. Second, the

number of possible combinations in 𝑉 𝑡
also increases, making the time for generating 𝑉 𝑡

increase.

Besides, we observe that when𝑚 = 5, the time required to select 10, 15, and 20 features is similar.

This is because there are two parties in this experiment, and the number of selected features at the

first party is roughly the same, resulting in a similar time for generating 𝑉 𝑡
.

For the communication cost shown in Figure 14(b), we can see that it gradually increases until

𝑚 = 4 and starts to decrease when𝑚 = 5. This trend is consistent with our analysis in Section 4.6.

Note that when 𝑚 < 4, 𝐿′ is smaller than 𝐿, which means that the 𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) is monotonically

increasing with𝑚. When𝑚 ≥ 4, 𝐿′ is greater than 𝐿, so𝐶𝑜𝑠𝑡 (𝑉 𝑡 ) = 𝐿 · ⌈ |𝑆
𝑘 |
𝑚

⌉. Thus, given the same

𝐿, a larger𝑚 results in lower cost.

Varying the number of overlapping features.We notice that overlapping features can affect

the accuracy of some filter-based feature selection methods (e.g., FATE-IV and MI). For example,

in Figure 9(a), FATE-IV appears as a stair-wise phenomenon, such as when 𝑁 = 3 and 𝑁 = 4, the
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(a) Accuracy of LR (b) Cost Comparison

Fig. 15. Impacts of overlapping features on PhysioNet.

(a) Accuracy of LR (b) Cost Comparison

Fig. 16. Impacts of feature distribution on PhysioNet.

accuracy is the same. The reason is that it selects overlapping features, leading to lower accuracy.

In contrast, FEAST can mitigate this problem by considering the correlation among features.

In this set of experiments, we further study the effects of the number of overlapping features

on FEAST. Specifically, we divide the features equally into two parts for the two parties, and add

different numbers of overlapping features to each party (i.e., {10, 20, 30}) that are owned by the

other party. Figure 15 shows the comparison results with respect to accuracy, computation cost,

and communication cost. We can observe that the accuracy is in a stable range with 10, 20, 30

overlapping features, which indicates that FEAST is insensitive to the number of overlapping

features, demonstrating its superior performance. For the computation cost, as the number of

overlapping features increases, it also increases linearly, because each party holds more features,

which needs more calculations. Regarding the communication cost, it mainly depends on the size of

the statistical variable 𝑉 𝑡
, which varies according to the number of selected features in each round.

Varying the distribution of features. We study the effect of the distribution of features among

parties on FEAST’s performance. In particular, we use two partitioning methods. One method is to

split the features randomly (i.e., balanced distribution). The other is to split the features according

to feature importance (i.e., unbalanced distribution); that is, we assign the important features to

one party and the rest of the features to another party.

Figure 16(a) shows the accuracy comparison of the two partitioning methods. We observe that

the unbalanced distribution achieves slightly better accuracy than the balanced distribution. The

rationale is that the unbalanced distribution allows the party to select more important features in

the first round, which can better guide the selection afterward. In terms of the cost in Figure 16(b),

when 𝑁 = 10, the communication cost of unbalanced distribution is much smaller because all the

10 selected features are in the same party. Thus, the feature selection is complete in the first round

without the need to transmit statistical variables 𝑉 𝑡
.
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(a) Accuracy of XGBoost (b) Cost Comparison

Fig. 17. Impacts of stratified sampling on PhysioNet.

(a) Accuracy of LR (b) Accuracy of SVM

Fig. 18. Impacts of normalization on PhysioNet.

5.4 Ablation Study
Next, we conduct a series of ablation studies on the PhysioNet Challenge 2012 dataset to validate

the effectiveness of dynamic stratified sampling, feature score normalization, and feature deletion

optimizations in the FEAST framework. To highlight the reduction in computation, we use the

overall computation time of the parties instead of the overall running time of the framework to

represent the computation cost in this ablation study.

5.4.1 Stratified sampling. We first demonstrate that the proposed dynamic stratified sampling

method achieves comparable accuracy to that using the full dataset while being more efficient

in terms of communication and computation costs. Figure 17(a) shows the accuracy comparison.

We report the classification accuracy of the XGBoost classifier with regard to dynamic stratified

sampling (with 8192 samples), the full dataset (with 12000 samples), and two normal stratified

sampling settings (with 4000 and 6000 samples, respectively). We observe that the accuracy of the

dynamic stratified sampling and full dataset methods are almost the same w.r.t. different numbers

of selected features, indicating that subsequent data binning and statistical variable generation

stages are hardly affected. However, when the sample size decreases to 6000 or 4000, we can find a

significant drop in the accuracy, showing that the selected dataset has produced a deviation. These

results suggest that our dynamic stratified sampling method can effectively reduce the amount of

data without degrading accuracy.

Further, we compare the communication cost (i.e., bars) and computation cost (i.e., lines) of

dynamic stratified sampling to those using the full dataset, as illustrated in Figure 17(b). When N

is equal to 5, 10, and 15, the communication cost of dynamic stratified sampling is 67.9%, 58.1%,

and 68.4% of that using the full dataset, respectively. For the computation cost, the percentages

are 67.9%, 58.1%, and 68.4%, respectively. As a consequence, we achieve about a 25% reduction in

computation cost and 30% reduction in communication cost, with almost no accuracy loss.
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5.4.2 Feature score normalization. Then, we validate the feature score normalization method

presented in Section 4.3, which aims to alleviate the bias toward large domain sizes in CMI-based

methods. We compare our method (i.e., Equation 12) in FEAST with two methods: one is Equation 12

without the factor 𝛼 , and the other is feature score without normalization (i.e., Equation 4).

Figure 18(a) and 18(b) summarize the accuracy of the three methods on the PhysioNet dataset

using the LR and SVM classifiers, respectively. The accuracy trends are similar on the two classifiers

w.r.t. the number of selected features 𝑁 . We analyze the results in three stages. First, when 𝑁 < 3,

the features selected by the three formulas are the same, due to the fact that all the features are

selected in the first party using the MI method (i.e., Equation 3), given the small 𝑁 . Thus, there is no

bias towards large domains in this stage because no features are merged. Second, when 3 < 𝑁 ≤ 15,

we observe that FEAST without normalization performs the worst. This is expected because of the

large domain bias introduced. Also, the accuracy of FEAST is higher than that of FEAST without

the factor 𝛼 , because 𝛼 is the square root of the domain size, which can further reduce the effect of

domain size on the feature score. Taking the SVM classifier as an example, the accuracy of FEAST is

always the highest when 5 < 𝑁 < 15, and it achieves up to 5.58% accuracy improvement compared

to that without normalization or without the factor 𝛼 . Third, when 𝑁 > 15, most of the highly

informative features have already been selected; therefore, the accuracy difference of the three

methods is insignificant. The results demonstrate that our normalization method can effectively

mitigate the bias especially when selecting highly informative features.

Table 1. Impacts of the feature deletion strategies on the PhysioNet dataset.

Delete Strategy

ROC_AUC Score (LR) Computation Time

N=5 N=10 N=20 N=5 N=10 N=20

Overlapping

features

Non-del 0.809 0.8299 0.8359 5.34s (100%) 10.62s (100%) 13.39s (100%)

Olp-del 0.809 0.8336 0.8359 5.19s (98.16%) 9.36s (88.16%) 10.58s (79.05%)

Tail

features

Non-del 0.809 0.8336 0.8359 5.84s (100%) 10.04s (100%) 13.30s (100%)

5% 0.809 0.8336 0.8359 5.62s (96.22%) 9.82s (97.74%) 12.58s (94.56%)

10% 0.809 0.8336 0.8359 5.28s (90.48%) 9.2s (91.58%) 11.92s (89.57%)

15% 0.809 0.8336 0.8354 4.94s (84.66%) 8.44s (84.08%) 10.91s (81.98%)

20% 0.809 0.8336 0.8354 4.5s (77.00%) 7.96s (79.24%) 10.22s (76.85%)

5.4.3 Feature deletion. In the following, we validate the effectiveness of the two feature deletion

strategies in FEAST: overlapping feature deletion and tail feature deletion. Table 1 summarizes the

accuracy and computation time of the logistic regression classifier on the PhysioNet dataset. In

order to compare the computation time more clearly, we calculate the fraction of the computation

time using the proposed deletion strategy over that of the non-deletion strategy (which is always

100%, regardless of 𝑁 ).

Overlapping feature deletion. We observe that deleting overlapping features before the feature

ranking and selection stage prevents features that provide highly similar information from being

selected simultaneously and reduces the computation time of feature scores in subsequent rounds.

Specifically, the accuracy of the non-deletion and overlapping-deletion strategies are the same

when 𝑁 = 5 (0.809) and 𝑁 = 20 (0.8359), indicating that the same features are selected. In some

cases, the overlapping-deletion strategy even slightly outperforms the non-deletion strategy (e.g.,

when 𝑁 = 10, the accuracy is 0.8299 and 0.8336, respectively). This demonstrates that our strategy

has high reliability and does not mistakenly delete useful features but may delete features that

affect the accuracy negatively in subsequent rounds.

In terms of the computation cost, as 𝑁 increases, the percentage of computation time for

overlapping-deletion versus non-deletion decreases from 98.16% to 88.16% and to 79.05%. Such a
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substantial decrease in computation time is because: the more features selected, the more features

will be highly similar or even duplicated among other parties, resulting in more features being

deleted and, therefore, reducing the computation time. If there are no overlapping features among

the parties, the overlapping-deletion strategy will be equivalent to the non-deletion strategy.

Tail feature deletion. In the feature ranking and selection stage (see Section 4.4), we delete the tail

features because they can hardly provide more useful information in the subsequent rounds. Now

we evaluate this strategy by comparing it to the non-deletion strategy, i.e., without deleting any

tail features. We further vary the deletion percentage with 5%, 10%, 15%, and 20%, to investigate its

impact on the accuracy and computation cost. As shown in Table 1, the ROC_AUC score does not

change when the last 5% and 10% of the tail features are removed, compared to the non-deletion

strategy. Besides, when the deletion percentage increases to 15% or even 20%, the ROC_AUC score

only decreases by 0.0005 at 𝑁 = 20.

With regard to the computation cost, we see that the larger the deletion percentage, the less

the overall computation time, which is in accordance with our expectations. For example, when

𝑁 = 20, the computation time is 12.58s, 11.92s, 10.91s, and 10.22s for deletion percentages 5%,

10%, 15%, and 20%, respectively. In addition, we find that given the same deletion percentage, the

ratio of computation time over the non-deletion strategy is similar, even with different values of

𝑁 . For instance, when the deletion percentage is 10%, the computation time for selecting 5, 10,

and 20 features is 90.48%, 91.58%, and 89.57% of the original time, respectively. This is because the

percentage of deleted features is fixed in each round.

6 CONCLUSION
In this paper, we study the problem of feature selection in vertical FL. We present a federated feature

selection framework FEAST based on conditional mutual information (CMI) scores as a mechanism

to enable multi-parties to collectively select informative features. To reduce the communication

cost exchanged among the parties and protect the parties’ raw data, we devise a communication-

efficient method that merges several features before transmission. Our extensive experimental

study using MIMIC III, PhysioNet Challenge 2012, Census-Income, and Nomao datasets shows that

FEAST achieves comparable accuracy to a centralized algorithm and outperforms state-of-the-art

baselines by up to 8.71% in terms of ROC_AUC score. Moreover, FEAST has an order of magnitude

improvement in communication and computation costs compared to the baselines.
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