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ABSTRACT
Heart is the most important organ of the human body, and Elec-
trocardiogram (ECG) is an essential tool for clinical monitoring
of heart health and detecting cardiovascular diseases. Automatic
detection of ECG anomalies is of great significance and clinical
value in healthcare. However, performing automatic anomaly de-
tection for the ECG data is challenging because we not only need to
accurately detect the anomalies but also need to provide clinically
meaningful interpretation of the results. Existing works on auto-
matic ECG anomaly detection either rely on hand-crafted designs
of feature extraction algorithms which are typically too simple
to deliver good performance, or deep learning for automatically
extracting features, which is not interpretable.

In this paper, we propose ECGGAN, a novel reconstruction-based
ECG anomaly detection framework. The key idea of ECGGAN is
to make full use of the characteristics of ECG with the periodic
metadata, namely beat, to learn the universal pattern in ECG from
representative normal data. We establish a reconstruction model,
taking leads as constraints to capture the unique characteristics of
different leads in ECG data, and achieve accurate anomaly detection
at ECG-level by combining multiple leads. Experimental results
on two real-world datasets and their mixed-set confirm that our
method achieves superior performance than baselines in terms of
precision, recall, F1-score, and AUC. In addition, ECGGAN can
provide clinically meaningful interpretation of results by revealing
the extent to which abnormal sites deviate from the normal pattern.

CCS CONCEPTS
• Applied computing → Health care information systems; •
Human-centered computing → Scientific visualization.
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1 INTRODUCTION
National University Heart Centre (NUHC) is set up by the National
University Health System (NUHS) 1 in Singapore to meet the needs
of providing better care to the increasing number of patients who
are diagnosed with cardiovascular diseases. Cardiovascular diseases
seriously threaten human life and health, and they have become the
world’s primary cause of death with high disability and mortality
rate [5, 20, 50]. In NUHC, clinicians work with collaborators from
universities and research institutes [38, 43, 47] to develop innovative
approaches for cardiovascular disease analytics.

In particular, Electrocardiogram (ECG) is the principal diagnostic
tool employed to record the electrical activity of the heart, which is
used to diagnose cardiovascular diseases, such as arrhythmias, heart
attacks, and heart failure [18, 28, 36]. A standard 12-lead ECG mon-
itors the beating of the heart from 12 angles by electrodes placed in
the chest and limbs, including six limb leads (I, II, III, aVF, aVL, and
aVR) and six chest leads (V1-V6) [4]. To assist in cardiovascular
disease diagnosis, the raw ECG collected from the hospital needs
to go through several steps of processing. Figure 1 illustrates the
pipeline for automatic anomaly detection for ECG data in NUHC.
The general procedure first extracts the ECG of the specified class,
such as normal, abnormal (ST-segment elevated (STE), atrial fib-
rillation (AF), premature atrial contraction (PAC), etc.), from the
database. Then the physiological and environmental noises, e.g.,
baseline wander, power line interference, and muscle artifacts, are
filtered from the ECG to ensure data quality. Subsequently, algo-
rithms are designed based on medical knowledge to extract key
features or patterns in the ECG, such as P wave, RR interval, ST
slope, and determine whether they exceed the normal value range
1NUHS is an integrated academic health system that operates four public hospitals
and a number of national specialty centers and polyclinics in Singapore.
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Figure 1: The overview of ECGGAN.

to detect ECG anomalies. Finally, we can provide interpretable re-
sults to clinicians by locating the specific leads and sites of the
anomalies [3, 54, 58]. Performing automatic anomaly detection for
the ECG data is challenging because we not only need to accurately
detect the anomalies but also need to provide clinically meaning-
ful interpretation of the results [26, 59, 61]. To address the above
two challenges, we propose ECGGAN, a reconstruction-based ECG
anomaly detection framework for effective and interpretable car-
diovascular disease analytics, which focuses on the ECG Anomaly
Detection and Results Interpretation steps in Figure 1.

To be specific, the heart has a highly consistent physiological
structure, and the ECG signals generated by the beating of the
heart are also consistent [32]. Normal heart activities are there-
fore associated with a common normal ECG pattern. As shown
in Figure 2, a normal ECG consists of multiple normal periodic
metadata, known as beat, which has similar waveform structures,
including P, QRS, and T waves [23, 42] (shown in the upper right of
the figure). Abnormal ECG signals can be grouped into three broad
categories according to the clinical features. First, the anomalies
can be observed in every beat in the lead, such as STE. An example
can be seen in the first abnormal ECG at the bottom left of Figure 2,
where we highlight the abnormal beats with red color. Second, the
anomalies are present only within several beats. An example is AF
shown in example 2) at the bottom left of Figure 2, where the ante-
rior beats are normal but each of the posterior beats is abnormal.
Third, the anomalies are reflected across multiple beats, which can
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Figure 2: Normal and abnormal ECG examples. Anomalies
are highlighted with red background color. Note that full
12-lead ECG include lead I, II, III, aVR, aVL, aVF, and V1-V6.
Due to space constraint, we only show few leads as examples.

only be detected together with the anterior and posterior beats.
The example 3) at the bottom left of in Figure 2 shows the ECG
of PAC, where the intervals of beats are irregular. Moreover, the
ECG characteristics of different leads present significant differences,
which can be observed at the top left of Figure 2 where we only
show four (out of 12) leads (i.e., V1-V4 for normal ECG), posting
another challenge for ECG anomaly detection and localization.

Most existing methods for ECG anomaly detection extract fea-
tures from the original ECG, and subsequently determine if they are
abnormal by directly comparing with the threshold set in medical
machines or feed them into various machine learning models such
as SVM [49, 73] and KNN [57, 70] for classification. For example,
Philips DXL [76] extracts heart rate, P wave and other features to
detect anomalies by determining whether they exceed the thresh-
old, e.g., heart rate over 100 beats per minute or P wave width
over 2.5mm. However, these conventional methods are simplistic
and rely heavily on hand-crafted feature extraction, which cannot
adapt well to complex ECG anomalies. With the application of
deep learning (DL) in healthcare [12, 27, 44–46, 48, 69, 71], deep
neural networks (DNNs), especially convolutional neural networks
(CNNs) [53, 56, 68, 74], have been widely used in ECG anomaly
detection for better predictive performance. However, the perfor-
mance of DNNs highly depends on the quantity and quality of
annotated data, which is typically difficult to obtain in large quan-
tity due to data privacy protection regulations [9, 55]. Additionally,
clinicians often find it challenging to trust complex black box mod-
els due to their poor interpretability, which further raises the barrier
to the adoption of DNNs in healthcare.

Since multi-lead ECG can be regarded as multivariate time se-
ries, some other works take advantage of reconstruction-based
time series anomaly detection methods in general domain [2, 11,
17, 21, 35, 62] for ECG data. These reconstruction-based methods
typically generate output data from the input data based on the
general pattern learned from the training data. Then, they calculate
the difference between the original data and the generated data as
the anomaly score and compare with the hand-crafted threshold to

5072



ECGGAN: A Framework for Effective and Interpretable Electrocardiogram Anomaly Detection KDD ’23, August 6–10, 2023, Long Beach, CA, USA

identify the anomalies. In general domain, however, anomalies in
the time series may just be “fluctuations”, which are points deviated
from most of the data. In contrast, ECG data are composed of peri-
odic fluctuations (i.e., beat), and the anomalies can be (1) points that
deviate from normal fluctuations or (2) major abnormal patterns
with minor normal patterns. As a result, these methods are not suit-
able for ECG anomaly detection as they may misinterpret normal
fluctuations in ECG as anomalies or show insensitivity when identi-
fying minor anomalies. For ECG, Zhou et al. [75] propose BeatGAN,
a reconstruction-based model using generative adversarial network
(GAN) [22]. This method performs anomaly detection in units of
beats rather than the entire ECG, and thus can only detect certain
beat-level anomalies. Recall the three types of anomalies in Figure 2,
BeatGAN performs well in detecting the first type anomalies, but
may fail for the other two types (i.e., anomalies like AF that appear
in only several beats or anomalies like PAC that are present across
beats) since it processes every single beat independently and never
relates them even for the beats in the same lead. Moreover, it also
ignores the information from multiple leads, which is important
for identifying ECG anomalies.

In this paper, we propose ECGGAN for effective and interpretable
cardiovascular diseases analytics. The key idea of ECGGAN is to
learn the universal pattern from representative normal data based
on periodic and regular fluctuations, and then reconstruct ECG to
measure the difference between anomalies and normal patterns.
Unlike BeatGAN, our method is able to detect anomalies beyond
the beat-level and exploits the information from multiple leads.
To be specific, since it is difficult for the reconstruction model to
capture every detail in the ECG and properly reconstruct the long
ECG signal, we design an ECG cutting module that cuts ECG into
periodic metadata (as beats) to learn the detailed pattern in ECG in a
finer-grained manner. In reconstruction module, the reconstruction
of beat-level signals is achieved with a conditional GAN (cGAN),
where the input beat-level signal is conditioned on the lead index
as the constant. Subsequently, we develop a mechanism, namely
ECG restoring module, which restores the reconstructed beats with
lead constraint to obtain the complete reconstructed ECG signals.
Finally, to detect the anomalies in ECG, the residual matrix between
the reconstructed ECG and the original ECG is fed into the anom-
aly detection module, which comprises multi-scale filters and the
Convolutional Block Attention Module (CBAM) [67] to capture the
relationship between different leads. In this way, ECGGAN enables
to assist in the diagnosis of cardiovascular disease. Besides accurate
anomaly detection, our method provides interpretability of results
in the anomaly interpretation module, by visualizing the residual
matrix through heat map, which locates the specific sites and leads
of the anomalies. We summarize the main contributions as follows.

• We propose ECGGAN, a novel reconstruction-based ECG
anomaly detection framework to automatically detect anom-
alies and provide interpretable results for ECG data.

• We study the characteristics of ECG, and design a cutting, re-
construction and restoring mechanism for ECG data to learn
the fine-grained normal pattern of beats and reconstruct the
complete ECG.

• We propose a conditional GAN, which takes leads as con-
straints to capture the unique characteristics of each lead,

and construct an anomaly detection module with multi-scale
filters and CBAM to detect anomalies at ECG-level.

• We conduct extensive experiments on two real-world ECG
datasets and their mixed-set. The results confirm that our
method achieves superior detection performance in terms
of precision, recall, and F1-score.

In the remainder of this paper, we review the existing works in
Section 2. In Section 3, we present the problem formulation, and
introduce the design and implementation details of each module
of ECGGAN. Section 4 shows the experimental results and the
interpretability of ECGGAN. Finally, we conclude the paper and
describe future directions in Section 5.

2 RELATEDWORK
Conventional Feature Extraction-based Anomaly Detection.
Programs for computer-aided automated ECG analysis have been
available since the 1950s. Early methods generally extract ECG
features (P wave, QRS wave, T wave, etc.) based on hand-crafted
designs, such as DWT [14, 30, 49, 57], CWT [30], DCT [30], and
Db4 [15, 52], and then detect anomalies by deciding whether the
value or the shape deviates from the normal range [8, 16, 34, 60].
For example, Philips DXL [76] analyzes single-lead or 12-lead ECG
automatically by identifying pacemaker pulses, P wave, QRS wave;
the Marquette 12SL algorithm [19] uses chest leads to extract heart
rate, electrical axis and other features for arrhythmia detection;
HES (Hannover ECG System) [51] can detect anomalies in limb
and chest according to hand-crafted setting thresholds. In more
advanced works, the extracted features are fed into machine learn-
ing classifiers, such as SVM [49, 73], Decision Tree or Random
Forest [37, 72], and KNN [57, 70], for ECG anomaly detection.

The above methods rely on expert knowledge to design the
algorithm for feature extraction, rather than fully automatic feature
extraction. Moreover, these conventional methods can be simplistic
and may not adapt well to the complex clinical environment, such
as excessive noise, multi-lead characteristics, and variability of
diseases and patients.

Deep Learning-based Anomaly Detection. In recent years,
DL-based methods have been applied to ECG anomaly detection.
Since multi-lead ECG data is similar to images, CNNs are often
used for the task [7, 53, 56, 66, 68, 74]. AY et al. [24] propose a
DNN that classifies 12 cardiac rhythm categories, and the average
F1-score is higher than general medical experts, which verifies the
effectiveness of the end-to-end DL-based method for heart rhythm
classification. Liu et al. [41] propose a ResNet architecture [25] with
an attentionmechanism, which assigns weights to each local feature
of ECG by its importance, and automatically optimizes the weights
during model training. Kwon et al. [33] propose an Ensemble Neural
Network, which combines demographic information, extracted ECG
features, and feature vectors from the original ECG to diagnose
the left ventricular hypertrophy disease. However, these DL-based
methods are black-box models, which have poor interpretability
and cannot provide reliable reference for doctors’ clinical diagnosis.

In order to provide interpretable results, many anomaly detection
works take advantage of reconstruction-based methods. Autoen-
coder (AE) [29] is one of the most classical reconstruction models,
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which is composed of Encoder and Decoder. However, AE is data-
dependent, which can only process data similar to the training
data and cannot extract features beyond the training data well. To
address the limitations of AE, Variational Autoencoder (VAE) [10]
learns the distribution of training data so that it can generate more
comprehensive data. In addition, reconstruction methods based on
GAN [22] are also the current main research direction. Akcay et
al. [2] propose GANomaly, with the generator consists of Encoder1-
Decoder-EnCoder2, and use the difference of hidden space features
produced by Encoder1 and Encoder2 as the reference for detect-
ing anomalies. Considering the characteristics of time series, Li
et al. [35] take Long Short-term Memory (LSTM) as the basic net-
work of GAN, namely MAD-GAN, using a novel Discrimination
and Reconstruction Anomaly Score (DR-Score) to combine the two
losses to detect potential anomalies. However, the above general
reconstruction-based methods only focus on time series with nor-
mal data mostly, and lack adjustments specific of ECG data, which
leads to an unsatisfying performance. BeatGAN [75], a GAN-based
method proposed by Zhou et al., is able to detect abnormal rhythms
at the beat-level by reconstructing the data and calculating the error
between the original data and the reconstructed data as an anomaly
score. However, BeatGAN only focuses on beat data, and cannot
exploit the information cross beats and the unique characteristics
of lead for detecting anomalies at ECG-level.

3 METHODOLOGY
In this section, we first formulate the problem of ECG anomaly de-
tection and interpretation. Subsequently, we present the overview
of ECGGAN and elaborate on each of its modules. We further dis-
cuss how to give an interpretable result based on the reconstructed
ECG. Table 1 lists the definitions of symbols used in this paper.

3.1 Problem Formulation
Multi-lead ECG represents electrical signals recorded from different
angles, reflecting the health of different regions of the heart, e.g.,
lead I is composed of the signals recorded by the sensors placed
on wrists. Figure 2 shows a portion of the standard 12-lead ECG.
The diagnosis of cardiovascular disease is often made by one or
more specific leads, e.g., ST-segment depression (STD) caused by
subendocardial ischemia is usually present in leads V4-6, I, II, and
aVL. The task studied in this paper is to take multi-lead ECGs as
input and detect the anomalies present in the ECG signals.

Formally, let 𝑋 ∈ R𝑀×𝑁 be a multi-lead ECG signal, which
has𝑀 leads for each time tick 𝑡 and 𝑁 time ticks in length in one
lead. beat is the periodic metadata of ECG in a lead. The 𝑗-th beat
in the 𝑖-th lead is denoted by 𝑥𝑖 𝑗 ∈ R1×𝐿 , where 𝐿 is the beat
length. Accordingly, we have 𝑋 = {𝑥𝑖 𝑗 |𝑖 = 1, · · · , 𝑀 ; 𝑗 = 1, · · · , 𝑘},
where 𝑘 is the number of beats in one lead of ECG. Anomaly is
defined as the segment that deviates significantly from the normal
pattern. Given a collection of multi-lead ECGs, X = {𝑋1, 𝑋2, · · · },
our anomaly detection task is to output the binary labels, 𝑌 ∈ {0, 1},
to indicate whether the corresponding ECG is normal or abnormal.
Anomaly interpretation is to explain why the ECG is identified as
abnormal, i.e. to provide the specific sites, leads and severity of the
anomalies in the ECG.

Table 1: Table of symbols

Symbol Definition
𝑀 number of leads in ECG
𝑁 length of ECG
𝑋 ∈ R𝑀×𝑁 multi-lead ECG
𝑌 label of ECG
𝐿 length of beat
𝑥𝑖 𝑗 ∈ R1×𝐿 the 𝑗-th beat in the 𝑖-th lead of ECG
𝑦 lead index of beat
𝑘 number of beats in one lead
X = {𝑋1, 𝑋2, · · · } collection of multi-lead ECGs
𝑅𝑙𝑖𝑠𝑡 list of beats’ positions
𝑡 the time tick index of ECG
𝐿𝑎𝑣𝑔 average length of beats
𝑋 ′ reconstructed ECG
𝑥 ′ reconstructed beat
M residual matrix
𝐺 (·) generator
𝐷 (·) discriminator
𝐺𝐸 (·) encoder of 𝐺 (·)
𝐺𝐷 (·) decoder of 𝐺 (·)
𝐷𝐸 (·) encoder of 𝐷 (·)
𝐿𝐺 loss of 𝐺 (·)
𝐿𝐷 loss of 𝐷 (·)
𝐿𝐺−𝑙𝑎𝑏𝑒𝑙 label loss item of 𝐺 (·)
𝐿𝐺−𝑔𝑒𝑛 generation loss item of 𝐺 (·)
𝐿𝐺−𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 feature loss item of 𝐺 (·)
𝜆𝑙𝑎𝑏𝑒𝑙 weight of 𝐿𝐺−𝑙𝑎𝑏𝑒𝑙
𝜆𝑔𝑒𝑛 weight of 𝐿𝐺−𝑔𝑒𝑛
𝜆𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 weight of 𝐿𝐺−𝑓 𝑒𝑎𝑡𝑢𝑟𝑒
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐷𝑟𝑖 𝑓 𝑡 the baseline drift error in ECG
d kernels sizes of multi-scale filters
𝐹 latent features
𝜎 (·) sigmoid function
𝑙𝑟 learning rate
𝑟 dropout radio

3.2 Framework
The framework of ECGGAN is given in Figure 3. ECGGAN com-
prises four major modules: 1) The ECG Cutting module cuts the
original ECG into periodic metadata beats, retaining lead indexes
and cutting ticks; 2) The Reconstruction Model with Lead Constraint
learns the normal pattern with the unique characteristics of each
lead and reconstructs beats; 3) The ECG Restoring module restores
the complete reconstructed ECG signal from the reconstructed
beats; 4) The Anomaly Detection and Interpretation module detects
the deviations from normal pattern and locates these anomalies.

In the training process, we first cut the normal ECGs into beats
with the ECG cutting module, and then train the reconstruction
model with leads as constraints to learn the universal normal pat-
tern (see the left part of Figure 3). At test time, given an ECG 𝑋 , we
input the beats obtained from the cutting module into the trained
model to obtain the reconstructed beats and the reconstructed ECG
𝑋 ′ by the lead indexes and cutting ticks. Finally, the residual matrix
M between 𝑋 and 𝑋 ′ is fed into the anomaly detection module to
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Figure 3: The framework of ECGGAN

detect anomalies, as shown at the upper right of Figure 3. Besides
anomaly detection, we visualize M to locate and indicate the sever-
ity of the anomalies by revealing the abnormal deviations from the
normal pattern, as shown at the bottom right of Figure 3.

3.3 ECG Cutting Module
Since it is challenging to directly reconstruct the complete ECG
signals, the ECG cutting module cuts ECG signals into beats, which
can be uniquely determined by the largest peak, namely the R wave.
First, we detect the R wave ticks through heartpy [64, 65] based
on lead I to locate the position of beats, denoted by 𝑅𝑙𝑖𝑠𝑡 , where
𝑅𝑙𝑖𝑠𝑡 [𝑖] represents the time tick of the R wave of the 𝑖-th beat in the
whole ECG. Then, all signals in the other leads are cut into beats
with the same ticks, as these signals are aligned in the time domain.

To accurately cut each ECG and adapt the various length of beats
from different patients, we calculate the average length 𝐿𝑎𝑣𝑔 of the
distance between adjacent R wave ticks and use this length for ECG
cutting. For the 𝑖-th beat, we can pinpoint the start index 𝑡𝑠𝑡𝑎𝑟𝑡

𝑖
and

end index 𝑡𝑒𝑛𝑑
𝑖

as

𝑡𝑠𝑡𝑎𝑟𝑡𝑖 = 𝑅𝑙𝑖𝑠𝑡 [𝑖] −
𝐿𝑎𝑣𝑔

2
, 𝑡𝑒𝑛𝑑𝑖 = 𝑅𝑙𝑖𝑠𝑡 [𝑖] +

𝐿𝑎𝑣𝑔

2
. (1)

For every beat, we also retain the lead index, denoted by 𝑦, as well
as the start and end time tick 𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 . All beats are zero-padded
or cropped to a uniform length 𝐿. In addition, we remove the beats
at the left and right ends of the raw ECG as they usually do not
contain a complete period (see the middle left of Figure 3).

3.4 Reconstruction Model with Lead Constraint
After cutting the ECG signals into beats, we construct a model that
takes a beat as input and seeks to reconstruct the original beat
for normal data, where the lead index is also included as a con-
straint. This allows the model to capture the unique characteristics

in each lead and learn the normal pattern in the beat. The model is
trained with normal data, and when abnormal data is fed into the
trained model, the output is expected to differ from the input signal,
especially for the parts with abnormality. Figure 4 shows the archi-
tecture of the reconstruction model with the lead constraint. The
reconstruction model comprises a generator and a discriminator,
and their detailed designs are described below.

Generator 𝐺 (·) learns the universal pattern from large-scale
normal beats. The input of𝐺 (·) is a beat 𝑥 , and its output is denoted
by 𝑥 ′ with normal pattern, as shown in the upper part of Figure 4.
𝐺 (·) uses an autoencoder, which is composed of an encoder 𝐺𝐸 (·)
and a decoder𝐺𝐷 (·). During training, the goal of𝐺 (·) is to generate
beats with normal pattern and deceive𝐷 (·) to identify the generated
samples as real. The generator needs to produce patient-specific
information and the unique lead characteristics in 𝑥 . So, it takes
the ECG signal 𝑥 and lead information 𝑦 into account, and its
optimization objective is to minimize the following loss 𝐿𝐺−𝑙𝑎𝑏𝑒𝑙 :

𝐿𝐺−𝑙𝑎𝑏𝑒𝑙 = 𝐸𝑥∼𝑃𝑥 [log(1 − 𝐷 (𝐺 (𝑥 |𝑦)))] , (2)

where 𝐷 (𝐺 (𝑥 |𝑦)) represents the decision of the discriminator for
the output of the generator based on 𝑥 and 𝑦. Specifically, we feed
beat and the one-hot encoding of 𝑦 into the 1-D convolution layer
with similar structure, and concatenate the output feature vectors
to obtain the joint representation, shown as the left part in Figure 4.

However, it is not sufficient to rely only on 𝐿𝐺−𝑙𝑎𝑏𝑒𝑙 to learn
the normal pattern. Even though 𝑥 ′ has a universal normal pattern,
𝑥 ′ may be morphologically dissimilar from 𝑥 , leading to incorrect
identification of unimportant deviations as anomalies. Therefore, to
establish the explicit association between 𝑥 and 𝑥 ′, we add 𝐿𝐺−𝑔𝑒𝑛
to 𝐺 (·) as a regularization term to measure the morphological
differences between 𝑥 and 𝑥 ′:

𝐿𝐺−𝑔𝑒𝑛 = 𝐸𝑥∼𝑃𝑥
[

𝑥 − 𝑥 ′



2
2

]
. (3)
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Figure 4: The architecture of the reconstruction model

In addition, the differences between 𝑥 and 𝑥 ′ in the latent space
also contain the data distribution characteristics, which is beneficial
for a better reconstruction. Therefore, we design 𝐿𝐺−𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 as an-
other regularization term to measure the latent feature differences
and establish the implicit associations between 𝑥 and 𝑥 ′:

𝐿𝐺−𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 = 𝐸𝑥∼𝑃𝑥
[

𝑓𝐷 (𝑥 |𝑦) − 𝑓𝐺 (𝑥 ′ |𝑦)



2
2

]
, (4)

where 𝑓𝐺 (·) and 𝑓𝐷 (·) represent the latent feature vectors from
𝐺 (·) and 𝐷 (·), respectively.

The overall optimization objective of𝐺 (·) consists of three terms,
𝐿𝐺−𝑙𝑎𝑏𝑒𝑙 , 𝐿𝐺−𝑔𝑒𝑛 and 𝐿𝐺−𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 :

𝐿𝐺 =𝜆𝑙𝑎𝑏𝑒𝑙 ∗ 𝐿𝐺−𝑙𝑎𝑏𝑒𝑙 + 𝜆𝑔𝑒𝑛 ∗ 𝐿𝐺−𝑔𝑒𝑛
+ 𝜆𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ∗ 𝐿𝐺−𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ,

(5)

where 𝜆𝑙𝑎𝑏𝑒𝑙 , 𝜆𝑔𝑒𝑛 and 𝜆𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 are hyper-parameters to represent
the weights of the loss terms.

Discriminator 𝐷 (·) is composed of an encoder 𝐷𝐸 (·) with the
same structure of𝐺𝐸 (·), followed by a fully connection layer and a
sigmoid function, as shown in the bottom part of Figure 4. Given
an beat with lead index, 𝐷 (·) determines whether the beat is real
or fake, and its optimization objective is to maximize the loss 𝐿𝐷 :

𝐿𝐷 = E𝑥∼𝑝𝑥 [log𝐷 (𝑥 |𝑦)] + E𝑥∼𝑝𝑥 [log(1 − 𝐷 (𝐺 (𝑥 |𝑦)))] . (6)

where the first and second terms encourage 𝐷 (·) to recognize real
data and identify fake data, respectively. 𝐷 (·) and 𝐺 (·) are trained
simultaneously with a two-player min-max game, and the trained
𝐺 (·) learns the normal pattern in the training data.

3.5 ECG Restoring Module
The ECG restoring module aims to restore the complete recon-
structed ECG signal from the reconstructed beats based on lead
indices and cutting ticks, so that information at different locations
can be jointly exploited for ECG-level anomaly detection.

First, we zero-pad or crop the reconstructed beats of the uniform
length 𝐿 to the original size based on the R wave and cutting ticks:

𝑡𝑠𝑡𝑎𝑟𝑡−𝑏𝑒𝑎𝑡𝑖 =
𝐿

2
−
(
𝑅𝑙𝑖𝑠𝑡 [𝑖] + 𝑡𝑠𝑡𝑎𝑟𝑡𝑖

)
, (7)

𝑡𝑒𝑛𝑑−𝑏𝑒𝑎𝑡𝑖 =
𝐿

2
+
(
𝑡𝑒𝑛𝑑𝑖 − 𝑅𝑙𝑖𝑠𝑡 [𝑖]

)
. (8)

where 𝑡𝑠𝑡𝑎𝑟𝑡−𝑏𝑒𝑎𝑡
𝑖

is the start time tick in the 𝑖-th reconstructed beat,
and 𝑡𝑒𝑛𝑑−𝑏𝑒𝑎𝑡

𝑖
is the end time tick in this beat. Then, we restore the

reconstructed ECG 𝑋 ′ by stitching the reconstructed beats of the
original size according to the lead indices and cutting ticks, which
enables 𝑋 ′ to retain the original location and lead features.

In addition, there is usually baseline drift caused by power line
interference and muscle noise in ECG, which makes ECG signal
offset [63]. To eliminate the baseline drift, we calculate the average
value at both ends of all beats of each lead:

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐷𝑟𝑖 𝑓 𝑡 =
1
2𝑘

𝑘∑︁
𝑖=1

(
𝑥𝑖 [𝑡𝑠𝑡𝑎𝑟𝑡𝑖 ] + 𝑥𝑖 [𝑡𝑒𝑛𝑑𝑖 ]

)
. (9)

Then, we subtract the baseline drift from the original and recon-
structed ECG.

3.6 Anomaly Detection and Interpretation
In view of the clinical requirement of accuracy and interpretation,
we design anomaly detection and interpretation modules to detect
and locate the anomalies by measuring the deviation of abnormal
sites from normal pattern, as shown in the right part of Figure 3.

Anomaly Detection. A straightforward idea like the general
reconstruction-based method is using the errors between the orig-
inal ECG 𝑋 and the reconstruction 𝑋 ′ as the score for anomaly
detection directly, but it is hard to detect minor anomalies and the
location information is ignored. Consequently, to measure the error
between ECG and normal pattern accurately, we first define the
residual matrix M in anomaly detection module:

M =
��𝑋 − 𝑋 ′�� . (10)

Since M can be viewed as an image, we design the anomaly
detection module by classifying M with a 2D CNN, as shown in
the upper right of Figure 3. As M corresponds to multiple leads,
the 2D CNN comprises multi-scale filters [13], so that the joint
information of adjacent leads is captured. Specifically, we preset a
set of multi-scale filters, and the kernels sizes of them are denoted
by d, where 𝑑 [𝑖] represents the kernel size of the 𝑖-th filter in the
lead dimension. Each filter is associated with an inception block
and takes M as input. The outputs of these filters are concatenated
passed through sequential 2D convolutional layers, which gives the
feature maps 𝐹 that are to be fed into the classification layers.

To better detect anomalies, the classification layers combine the
channel attention mechanism and spatial attention mechanism,
which is achieved with CBAM [67]. Specifically, for features 𝐹 of
size [𝐶,𝐻,𝑊 ], where𝐶 is the channel number, 𝐻 is the height, and
𝑊 is the width of the features, channel attention first conducts
average pooling and max pooling operations for each channel. The
results are then processed by a sharedMulti-Layer Perception (MLP)
andmerged. Finally, the sigmoid function is used for the final output
of channel attention. Mathematically, the computation 𝑀𝑐 (𝐹 ) of
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channel attention described above is represented as

𝑀𝑐 (𝐹 ) = 𝜎 (𝑀𝐿𝑃 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹 )) +𝑀𝐿𝑃 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐹 ))) , (11)

where 𝜎 (·) is sigmoid function and the dimension of 𝑀𝑐 (𝐹 ) is
[𝐶, 1, 1].

Then, 𝐹 is multiplied by 𝑀𝑐 to obtain 𝐹𝑐 for computing spa-
tial attention. Similarly to channel attention, spatial attention first
compresses the channels by conducting average pooling and max
pooling along the channels. The two pooling results are concate-
nated and fed into a 7×7 convolutional layer followed by a sigmoid
function, which produces the spatial attention. Mathematically, the
computation𝑀𝑠 (𝐹 ) of spatial attention is represented as

𝑀𝑠 (𝐹𝑐 ) = 𝜎

(
𝑓 7×7 ( [𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹𝑐 ) ;𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐹𝑐 )])

)
, (12)

where 𝑓 7×7 (·) represents the 7 × 7 convolution layer, [·; ·] is con-
catenation operation, and the dimension of𝑀𝑠 (𝐹𝑐 ) is [1, 𝐻,𝑊 ].

Finally, we multiply 𝐹𝑐 and 𝑀𝑠 to utilize the spatial attention,
and pass the result through a fully connected layer and a softmax
activation function to output the abnormality likelihood of 𝑋 .

Anomaly Interpretation. In clinical diagnosis, doctors usually
pay special attention to the sites that deviate from normal pattern,
and diagnose the lesions in heart according to the anomalies. 𝑀𝑖 𝑗

(the (𝑖, 𝑗)-th entry of M)) represents the deviation of the recon-
structed ECG 𝑋 ′ from the original ECG 𝑋 at lead 𝑖 and time 𝑗 ,
and a greater 𝑀𝑖 𝑗 represents more severe anomaly. Therefore, we
visualize 𝑀 and highlight the abnormal sites by a heat map, as
shown in the bottom right part of Figure 3. The color is close to
blue when𝑀𝑖 𝑗 is small, whereas the color close to red means that
𝑋 deviates from the normal pattern seriously at the corresponding
lead and location. For normal ECG, the heat map tends to be blue,
indicating that it is less likely to have abnormality. For abnormal
ECG, there will be obvious red or yellow areas in the visualization,
which means that these sites deviate from the normal pattern and
are very likely to have anomalies.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of ECGGAN, and
demonstrate the interpretability in locating ECG anomalies.

4.1 Experimental Setup
4.1.1 Datasets. While we are developing our ECGGAN framework,
the data engineers in NUHC are still in the process of cleaning and
extracting the raw ECG data from NUHS hospitals. Consequently,
suggested by clinicians from NUHC, we evaluate the effectiveness
of ECGGAN using publicly available real-world ECG datasets from
other hospitals first, before we deploy ECGGAN in NUHC. The
details of the two real-world ECG datasets are as follows:

• CPSC [39] contains ECGs collected from 11 hospitals, in-
cluding normal data and 8 categories of diseases such as AF
and PAC. Each sample is a standard 12-lead ECG signals with
a sampling frequency of 500Hz. We select 932 high quality
12-lead ECGs with 466 normal and 466 abnormal ECGs.

• AIWIN [1] contains normal and abnormal ECGs, which are
composed of standard 12-lead ECG signals with a sampling
frequency of 500Hz. Similarly, due to data quality problems,
we get a total of 768 ECGs after cleaning the dataset.

• Mixed-Set contains 1700 ECGs with 850 normal data and
850 abnormal data. Since the data in CPSC and AIWIN are
500Hz standard 12-lead ECG, we mix them as an additional
verification set for our proposed method.

4.1.2 Evaluation Metrics. We evaluate the effectiveness of ECG-
GAN with the metrics of precision, recall, F1-score and Area Under
Curve (AUC) with the standard deviation. We split the normal and
abnormal ECGs in the dataset into 10 folds with equal probability
and perform 8: 1: 1 split for training, validation, and testing, respec-
tively. We take each fold of data as a test independently to cover all
ECGs, calculate ten times and take the average as the test result.

4.1.3 Baseline Methods. We compare ECGGAN with three cate-
gories of ECG anomaly detection baselines: (1) feature extraction-
based methods: SVM [49] and KNN [57]; (2) general classification-
based methods: CNN [24]; (3) general reconstruction-based meth-
ods: LSTM [40], VAE [31], GAN [22],MAD-GAN [35], GANomaly [2],
and BeatGAN [75]. We briefly introduce these baselines as follows.

• SVM [49] uses the extracted features based on PCA method
for classification and automatic diagnosis of anomalies.

• KNN [57] finds the k-nearest neighbors and classifies the
ECG by neighbor category.

• CNN [24] is the general classification-based model that ex-
tracts the features of ECG for anomaly detection.

• LSTM [40] takes LSTMs as the backbone network and estab-
lishes an autoencoder model to detect the anomaly.

• VAE [31] is a reconstruction model that uses the Variational
Autoencoder to learn ECG latent variable information.

• GAN [22] is a general reconstruction model consisting of
the generator and the discriminator.

• MAD-GAN [35] considers the entire variable set concur-
rently to capture the latent interactions amongst the vari-
ables for Multivariate Anomaly Detection.

• GANomaly [2] uses a conditional generative adversarial net-
work that jointly learns the generation of high-dimensional
space and the inference of latent space.

• BeatGAN [75] is an anomaly detection algorithm for anoma-
lous beats based on adversarially generated time series.

4.1.4 Experimental Settings. We implement ECGGAN with Py-
torch library and set beat length 𝐿 to 500. The encoder 𝐺𝐸 (·) in
beat-level Reconstruction model is composed of five 1D convo-
lution layers, followed by BatchNorm and LeakyRelu function
with the leak slope to 0.2. The kernels of each layer in 𝐺𝐸 (·)
are 128(4/2/5)-256(4/2/1)-512(4/2/1)-1024(4/2/1)-1024(4/2/1), where
128(4/2/5) means the number of filters is 128, the size of filter is
4, the stride is 2 and the padding is 5. The decoder 𝐺𝐷 (·) is com-
posed of six 1D convolution layers similar to 𝐺𝐸 (·). We optimize
the training process similar to WGAN [6], setting the clamp value
of 𝐷 (·) parameter update to be 0.01, and the critic rounds of 𝐺 (·)
to be 2. Moreover, the learning rate 𝑙𝑟 = 0.005, dropout rate 𝑟 = 0.5,
𝜆𝑙𝑎𝑏𝑒𝑙 = 1, 𝜆𝑔𝑒𝑛 = 1, 𝜆𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 = 1. Anomaly Detection module
is composed of a multi-scale 2D convolution layer in inception,
followed by four 2D convolution layers and the residual matrix
M ∈ R12×5000. We design seven filters of different sizes, and the
kernel’s size is [(d, 40)/(1, 4)], while d is [1, 2, 3, 4, 6, 8, 12].
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Table 2: Performance of ECGGAN and baselines

Method CPSC AIWIN Mixed-Set
Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC

SVM 0.519±0.077 0.987±0.120 0.680±0.006 0.645±0.042 0.625±0.053 0.649±0.085 0.637±0.012 0.581±0.060 0.517±0.050 0.947±0.107 0.669±0.006 0.603±0.034
KNN 0.501±0.005 1.000±0.000 0.667±0.004 0.503±0.007 0.541±0.028 0.805±0.063 0.647±0.006 0.559±0.027 0.503±0.016 0.912±0.029 0.648±0.006 0.524±0.033
CNN 0.748±0.057 0.936±0.023 0.832±0.032 0.807±0.042 0.769±0.057 0.893±0.042 0.826±0.025 0.807±0.035 0.766±0.031 0.911±0.034 0.832±0.018 0.814±0.023
LSTM 0.625±0.019 0.933±0.016 0.749±0.017 0.750±0.037 0.539±0.040 0.919±0.070 0.680±0.011 0.558±0.033 0.565±0.032 0.931±0.036 0.704±0.018 0.639±0.042
VAE 0.594±0.024 0.951±0.045 0.731±0.015 0.673±0.042 0.512±0.011 0.977±0.031 0.672±0.006 0.532±0.055 0.545±0.029 0.948±0.053 0.693±0.012 0.606±0.047
GAN 0.615±0.021 0.930±0.027 0.743±0.014 0.680±0.039 0.515±0.011 0.980±0.018 0.676±0.006 0.545±0.041 0.543±0.032 0.952±0.051 0.691±0.014 0.595±0.053

MAD-GAN 0.569±0.058 0.914±0.098 0.694±0.017 0.661±0.047 0.527±0.014 0.987±0.022 0.687±0.011 0.546±0.029 0.508±0.004 0.992±0.008 0.672±0.003 0.585±0.034
GANomaly 0.660±0.015 0.931±0.038 0.773±0.009 0.771±0.031 0.616±0.105 0.864±0.113 0.719±0.021 0.640±0.073 0.619±0.062 0.880±0.081 0.727±0.024 0.705±0.051
BeatGAN 0.659±0.033 0.904±0.064 0.762±0.015 0.772±0.029 0.570±0.029 0.932±0.060 0.707±0.012 0.649±0.037 0.589±0.043 0.938±0.082 0.724±0.014 0.688±0.018
ECGGAN 0.775±0.018 0.936±0.045 0.848±0.015 0.829±0.016 0.851±0.048 0.911±0.020 0.880±0.026 0.872±0.032 0.792±0.035 0.926±0.038 0.854±0.014 0.835±0.019

4.2 Effectiveness
In Tabel 2, we summarize the overall experimental results mea-
sured in terms of precision, recall, F1-score, AUC on two real-world
datasets and the mixed-set. We can observe that ECGGAN out-
performs all baselines with a higher precision, F1-score, and AUC.
Based on these results, we have the following findings.

Comparison with conventional feature extraction-based
methods. Our method significantly outperforms SVM and KNN in
terms of precision, F1-score, and AUC, with at least 22.5%, 16.8%
and 18.4% improvement respectively across all datasets. Both SVM
and KNN methods classify almost all ECG as abnormal, that is why
the precision is close to 0.5 and recall is close to 1. On the contrary,
ECGGAN has the advantage of capturing complex normal pattern
with a more accurate performance for ECG anomaly detection.

Comparison with general classification-based methods.
We construct the CNN model with a network similar to the anom-
aly detection module in ECGGAN for fairness. We can observe
that ECGGAN outperforms CNN model on all datasets. Specifically,
precision, F1-score, and AUC increase by 8.2%, 5.4% and 6.5% re-
spectively on AIWIN, which fully demonstrates the effectiveness
of our method on ECG anomaly detection task. Different from
CNN which directly extracts features for anomaly detection, our
method can better detect ECG anomaly by learning the periodic
and fine-grained normal pattern in the ECG.

Comparison with general reconstruction-based methods.
Our method produces significantly better detection results than the
general reconstruction-based methods. As shown in Tabel 2, we
improve 17.4%, 12.1% and 13.7% on precision, F1-score, and AUC.
Among all the general reconstruction-based methods (i.e. LSTM,
VAE, GAN, MAD-GAN and GANomaly, BeatGAN), GANomaly
performs the best with more parameters. Even comparing to
GANomaly, we achieve 11.5%, 7.5% and 5.8% improvement on preci-
sion, F1-score and AUC, respectively. Since general reconstruction-
based methods are not specifically designed for detecting ECG
anomaly, they misidentify most normal fluctuations (beats in ECG)
as anomalies, which results in a high recall and low precision. In
addition, even with the special design for beat, BeatGAN only per-
forms anomaly detection in each beat rather than the entire ECG,
so could not detect anomalies that appear within several beats or
across beats. In contrast, ECGGAN is designed with considera-
tion of the periodicity and regularity of the ECG data, conducts a
conditional GAN to capture the unique characteristics of each lead
and defines a residual matrix to retain the global information at
ECG-level.

4.3 Ablation Studies of ECGGAN
To further evaluate the effectiveness of each component of ECG-
GAN, we gradually exclude the components to observe how the
model performance degrades. First, to verify the effectiveness of
lead constraints in the reconstruction process, we remove the con-
straints and directly generate beats for the reconstruction of 12-lead
ECG. Second, we mask the G-gen loss and G-feature loss, replac-
ing them with zero to study the importance of the regularization
terms. Finally, we replace anomaly detection module by calculat-
ing the error between the original ECG and the reconstruction
directly to study the effectiveness of the anomaly detection module
of ECGGAN. Table 3 shows the results of ablation experiments.

w/o Lead Constraint. We can observe that the F1-score de-
creases on all three datasets after removing lead constraints from
the reconstruction module, even if the improvement of AUC is not
obvious on the mixed-set due to different data sources. The results
indicate that the lead constraints can better capture the normal
pattern in ECG and improve performance by learning the unique
characteristics of each lead.

w/o Gen & Feature Loss. After removing the G-gen loss and
G-feature loss, the recall on CPSC and the precision on AIWIN
both decrease by 2.5%, and the F1-score also decreases by about 1%.
The results confirm that the addition of regularization terms can
better retain the specific information of different patients, which
establishes the explicit association between the original ECG and its
reconstruction, as well as the implicit association in hidden space.

w/o Anomaly Detection Module. We can observe that the
results are affected badly on all datasets after removing anomaly
detection module, with F1-scores decreasing by 9.2% to 17.4% and
AUC decreasing by 10.8% to 21.8%. This is because ECGGAN w/o
anomaly detection module requires the accumulated errors to reach
a relatively large number in order to be detected, which is hard to
detect minor anomalies.

4.4 Anomaly Interpretation
We demonstrate the interpretability results of ECGGAN at beat-
level and ECG-level by locating the sites and leads of anomalies.

Beat-level Anomaly Detection and Localization. We first
show the visualization results at beat-level in Figure 5. Specifically,
for normal beat, we can observe that the reconstructed beat (shown
in red) is very similar to the original beat (shown in black), and
thus it is identified as normal. For abnormal beat, the original beat
deviates significantly from the reconstructed beat with normal
pattern, especially at the red and yellow areas (shown in the circled
region), which reflect the sites of anomalies.
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Table 3: Performance of ECGGAN without specified component

Method CPSC AIWIN Mixed-Set
Precision Recall F1-score AUC Precision Recall F1-score AUC Precision Recall F1-score AUC

w/o LC 0.779±0.046 0.884±0.044 0.828±0.037 0.813±0.046 0.831±0.026 0.901±0.029 0.865±0.010 0.857±0.011 0.812±0.021 0.897±0.037 0.852±0.021 0.842±0.021
w/o GFL 0.775±0.016 0.910±0.038 0.837±0.016 0.818±0.016 0.825±0.082 0.922±0.062 0.871±0.033 0.856±0.039 0.819±0.049 0.888±0.041 0.852±0.019 0.841±0.027
w/o ADM 0.630±0.037 0.944±0.050 0.756±0.021 0.721±0.043 0.586±0.058 0.888±0.086 0.706±0.017 0.654±0.042 0.5854±0.034 0.947±0.024 0.724±0.022 0.669±0.066
ECGGAN 0.775±0.018 0.936±0.045 0.848±0.015 0.829±0.016 0.851±0.048 0.911±0.020 0.880±0.026 0.872±0.032 0.792±0.035 0.926±0.038 0.854±0.014 0.835±0.019

(a) Normal Beat in Lead  Ⅰ (b) Abnormal Beat in Lead aVR

Original Reconstructed

Normal Abnormal

Normal

Abnormal

Figure 5: Anomaly detection and localization at beat-level

ECG-level Anomaly Detection and Localization. Figure 6
illustrates the anomaly detection and localization at ECG-level with
two cases. The first case is Atrial Fibrillation (AF), which is a typical
disease in the second category mentioned in Section 1 where the
anomalies are present only within several beats, as shown in the
upper of Figure 6(a), where the original ECG is shown in black, and
the reconstructed ECG is shown in red. We can observe that the
anterior beats of the original ECG are normal with a well fitting to
the reconstructed ECG, while the posterior abnormal parts signif-
icantly deviate from the reconstructed ECG with normal pattern.
And we automatically visualize the abnormal sites in specific lead
as red by the anomaly interpretation module, shown in the red
circles in the figure. In this way, ECGGAN can pinpoint the specific
sites and leads of the abnormal part of the patient’s ECG.

The second is Premature Atrial Contraction (PAC), which is the
typical disease of the third category mentioned in Section 1, where
the anomalies are reflected cross multiple beats, as shown in the
bottom of Figure 6(b). First, we can notice that the intervals of beats
are irregular, especially the intervals in the posterior part are far
beyond normal. For the beats with normal morphology and interval,
the original ECG fits well with the reconstructed ECG, as shown
in the anterior part in the figure. But the posterior parts obviously
deviate from the reconstructed ECG, identified as anomalies, and we
automatically visualize these abnormal sites as red by the anomaly
interpretation module, as shown in the red circles of the figure. The
above two cases indicate that ECGGAN can accurately detect the
anomalies at ECG-level and enables us to focus on the locations
and leads of anomalies by visualizing the deviation between the
original ECG and the reconstructed ECG.

Ⅰ

Ⅱ

Ⅲ

1)  Anomaly in several Beats: Atrial fibrillation (AF)

Ⅱ

Ⅲ

aVR

2) Anomaly cross Beats: Premature atrial contraction (PAC)

Original Reconstructed

Normal

Abnormal

(a) Anomaly in several beats: Atrial fibrillation (AF)

Ⅰ

Ⅱ

Ⅲ

1)  Anomaly in several Beats: Atrial fibrillation (AF)

Ⅱ

Ⅲ

aVR

2) Anomaly cross Beats: Premature atrial contraction (PAC)

Original Reconstructed

Normal

Abnormal

(b) Anomaly cross beats: Premature atrial contraction (PAC)

Figure 6: Anomaly detection and localization at ECG-level

5 CONCLUSIONS
In this paper, we study the characteristics of ECG data with regu-
larity and periodicity and propose a novel ECG anomaly detection
framework based on the reconstruction of periodic metadata, called
ECGGAN. Taking leads of ECG as the constraints, ECGGAN cap-
tures the unique characteristics of each lead and learns the universal
patterns from representative normal data. Based on our restoring
mechanism that generates the complete reconstructed ECG signal,
the anomaly detection module of ECGGAN can exploit lead infor-
mation and the relationships between beats in the whole ECG to
detect anomalies beyond the beat-level. An extensive experimental
study on real datasets confirms that our ECGGAN achieves superior
performance compared to existing methods in terms of precision,
recall and F1-score. Moreover, ECGGAN can locate the specific sites
and leads of the anomalies by visualizing the deviation between the
original ECG and the reconstructed ECG, which helps to provide
an interpretable result for clinical diagnosis.
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