
PA-FEAT: Fast Feature Selection for Structured

Data via Progress-Aware Multi-Task Deep

Reinforcement Learning

Jianing Zhang†, Zhaojing Luo‡, Quanqing Xu§, Meihui Zhang†∗
†Tangshan Research Institute, BIT, ‡National University of Singapore, §OceanBase

zhangjianingbit@gmail.com, zhaojing@comp.nus.edu.sg, xuquanqing.xqq@oceanbase.com, meihui zhang@bit.edu.cn

Abstract—Feature selection is an effective technique for struc-
tured data analytics, aiming to eliminate redundant features
and irrelevant features for downstream tasks (e.g., classification).
With the deepening of data-driven decision-making applications
in various industries, the demand for real-time structured data
analysis is constantly increasing. At this time, high requirements
are placed on the time cost of feature selection. However, existing
feature selection methods may easily fall into the dilemma of
efficiency and effectiveness when faced with this situation due to
the huge feature space. In this paper, we study a novel fast feature
selection scenario, which is to generalize the knowledge of feature
selection from historical structured data analytics tasks (seen
tasks) and then quickly apply it to the process of feature selection
for future structured data analytics tasks (unseen tasks). We
propose a novel Progress-Aware multi-task deep reinforcement
learning method for Fast fEAture selecTion (PA-FEAT), which
makes full use of various progress-related information generated
during the knowledge generalization process to achieve efficiency
and effectiveness simultaneously. Extensive results on eight real-
world datasets show that PA-FEAT consistently outperforms
eight baselines in terms of efficiency and effectiveness.

Index Terms—Data Analytics, Feature Selection, Multi-Task
Learning, Deep Reinforcement Learning

I. INTRODUCTION

Structured data contains a huge wealth of information,

which is crucial for data-driven decision making [1]–[4]. For

better discovering valuable insights from structured data, Fea-

ture Selection (FS [5], [6]) is indispensable, aiming to elimi-

nate redundant and irrelevant features in advance and select the

optimal feature subset for downstream tasks. Effective FS can

help to improve predictive accuracy, reduce dimensionality,

shorten training time and increase comprehensibility.

Interactive Structured Data Analysis (ISDA [7], [8]) is an

important form of structured data analysis, which empowers

users to interactively explore data and make data-driven deci-

sions in a timely manner. As such, efficient feature selection

for downstream tasks during ISDA is required to ensure

low-latency processing. However, existing feature selection

methods can not be directly adopted into ISDA applications

in terms of effectiveness and efficiency. This is because

traditional methods (e.g., K-Best [9] and RFE [10]) are usually

unable to identify feature subsets with satisfactory prediction

accuracy. The emerging reinforced selection methods [11]–

∗ contact author

Knowledge
Generalization

Relational Database

Instance 1 … Instance N
Serum Glucose 130 … 142

Respiration Rate 18 … 12
Temperature 36.4 … 36.4

� … … …
Length of Stay > 5 Days YES … NO

In-hospital Death NO … YES
SOFA score > 5 NO … YES

… … … …

Features

Seen Tasks

Data Extracted from Database

Length of Stay
> 5 Days In-hospital Death SOFA score > 5

�

Seen Tasks

Length of Stay
< 3 Days

Readmission
in 3 Days

Heart Failure
in 3 Days

�

Unseen Tasks

Generalized
Knowledge

raise some
questions

Knowledge
Applyment

User

Fig. 1. Illustration of Fast Feature Selection.

[13] are more promising to discover best feature subset, but

usually require time-consuming calculation process.

We notice that in real applications, it is more often than not

to perform various analytics on the same set of data. Consider

the healthcare application as an example as illustrated in

Figure 1, where patients’ hospital data are extracted to support

various predictive medical tasks. There could be tasks such as

predicting patients’ in-hospital death and length of stay in the

past, and additional analysis such as readmission prediction

may be needed in the future. At the same time, it is not

difficult for data analytics systems to collect historical tasks

that share the same feature space. Our key insight is to leverage

the implicit associations between multiple analytics tasks over

the same feature space to expedite the feature selection for

future tasks. Specifically, we consider utilizing these asso-

ciations by capturing knowledge in feature selection across

multiple historical tasks (seen tasks) and quickly transferring

the knowledge to enhance future tasks (unseen tasks).

To the best of our knowledge, there is no previous works that

study the problem of leveraging historical tasks to realize fast

feature selection for future tasks. Multi-label feature selection

methods [14]–[16] can be twisted to address the problem

to some extent by considering historical and future tasks at

the same time. These methods utilize the correlation between

multiple labels and focus on providing a unified feature subset

for all labels (each label can be considered as a task) over the

same feature space. Thus, such methods can only generate the

same feature set for various future tasks, which is apparently

394

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00037

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

03
7

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

ignoring task-specific characteristics and therefore undesired.

An effective way of generalizing knowledge from multiple

tasks is Multi-Task Learning (MTL [17]). MTL is a subfield

of machine learning in which multiple tasks are learned

simultaneously, while using a shared representation for each

task. Then the knowledge obtained from seen tasks can be

quickly applied to unseen tasks through shared representation

for tasks [18]. Observing the recent success of introducing

DRL into single task feature selection [13], [19], to take

advantage of the powerful global search ability of DRL in

feature selection, we extend DRL with MTL, called Multi-

Task DRL (MT-DRL), to address the target problem. To this

end, we propose a novel MT-DRL framework for Fast fEAture

selecTion, called “FEAT”, which first generalizes knowledge

from multiple historical seen tasks simultaneously, and then

quickly applies the knowledge to the feature selection for

unseen tasks through shared representation for tasks. However,

there are still challenges to be solved in FEAT to ensure

effectiveness and efficiency, which largely stem from the

difficulties in capturing the knowledge about feature selection

across historical tasks.

First, in terms of MTL, simply treating all tasks equally will

lead to unbalanced knowledge generalization over multiple

seen tasks. Since different tasks have different learning diffi-

culties, they require different amount of learning resources to

ensure the quality of learning. For achieving balanced learning,

existing MTL methods consider to reduce the contribution

of simple tasks to the generalized knowledge by normalizing

the gradients from different tasks [20] or weighting different

tasks’ losses according to their reward magnitudes [21]. How-

ever, the balance relying on the gradient similarity or reward

magnitudes is usually unstable, especially when gradient or

reward vary largely within each task. Besides, due to the

lack of capability for allocating learning resources on demand,

the above methods are not able to make full use of learning

resources to extensively explore hard tasks. To address the

problem, we propose a novel adaptive Inter-Task Scheduler

(ITS), which first utilizes progress-related information (i.e.,

uncertainty and distance ratio) to measure the learning needs

of different tasks, and then dynamically allocate learning

resources for each seen task according to their learning needs

to make full use of limited learning resources.

Second, in terms of DRL, how to efficiently search the

large feature space is another challenge. DRL-based methods

usually suffer from low efficiency. Thus, many research efforts

are conducted to make DRL-based methods more efficient.

Some researches focus on reward enhancement by using

intrinsic reward [22] or introducing a reward randomization

mechanism [23] to make exploration more efficient. But at

the beginning of each exploration episode, they always start

from default initial states, ignoring the possibility of defining

more appropriate initial states based on the progress of ex-

ploration and exploitation. Go-Explore [24] and its extension

[25] propose to use a simple policy (e.g., random) to find

valuable experiences by exploring from the appropriate initial

states, and then use these experiences to train a learning policy.

Since they completely decouple the exploration from the

exploitation of learning policy, the exploitation progress of the

learning policy is not considered in the selection of appropriate

initial states, which weakens the role of appropriate initial

states. In this paper, we propose an Intra-Task Explorer (ITE),

which contains a novel Experience-Tree (E-Tree) to efficiently

organize the information of feature space searching progress of

each task from two aspects, i.e., exploration and exploitation,

and dynamically customize the initial states based on E-Tree.

In summary, we propose a novel Progress-Aware multi-

task deep reinforcement learning method for Fast fEAture

selecTion over structured data (PA-FEAT). Our contributions

are as follows:

• We propose a DRL based framework for structured data

feature selection, which can generalize knowledge from

multiple historical tasks efficiently and effectively, and

perform fast feature selection for future tasks.

• We propose a novel adaptive Inter-Task Scheduler (ITS),

which monitors the learning process and dynamically

allocates resources to ensure balanced learning over his-

torical tasks.

• We propose an Intra-Task Explorer (ITE), which contains

a novel Experience-Tree structure and an initial state

customization strategy to enable efficient search over

large feature space for each task.

• We conduct extensive experiments on eight real-world

datasets. The results show that PA-FEAT outperforms all

other baselines in terms of efficiency and effectiveness.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Structured Data. Structured data is widely used in almost

every industry [26], [27], and there have been growing interests

in designing models for better predictive analysis over struc-

tured data [28]–[31]. Specifically, structured data is generally

stored in multiple tables (relations) {T1, T2, ...}, and conforms
to a tabular format with relationship between different rows

and columns. Each column of the logical table corresponds

to a specific feature or a predictive attribute and each row

represents a data sample in learning models.

For ease of discussion, we formulate structured data as one

relational table T of n rows and m + k columns, including
m determinant attributes (feature vector) and k dependent at-
tributes (prediction target). Specifically, the i-th row can be de-
noted as a tuple (Xi, Yi) = (xi1, xi2, ..., xim, yi1, yi2, ..., yik),
where xij ∈ Xi is the j-th determinant attribute value and
yij ∈ Yi is the j-th dependent attribute value in the i-th row.
In our scenario, the prediction analysis will be carried out for

more than one dependent attribute.

Reinforcement Learning (RL). RL is known to learn through

trial-and-error interactions with a dynamic environment and

make long-term optimal decisions. In an ideal reinforcement

learning solution, a Markov Decision Process (MDP) is de-

fined as a tuple (S, A, Pr, R, O, ρ, ρ0, γ), where S , O and

A are the set of states, observations and actions of the envi-

ronment, respectively. The initial state s0 is drawn from the

395

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

distribution ρ0. During time slot [t, t + 1), the agent draws an
observation ot ∈ O, from the conditional observation probabil-
ity Pr(ot|st), and then chooses an action at to take. The next
state st+1 is drawn from transition probability ρ(st+1|st, at)
after taking actions at based on state st. Subsequently, the

agent receives a reward rt = R(st, at). γ ∈ [0, 1] is a discount
factor. In this paper, we use Dueling Deep Q-network (Dueling

DQN [32]) to train the policy. Dueling DQN separates the

advantage of taking some action in a state from the value of

state in value function and approximates value function and

advantage function by deep neural network. The Loss function

of Dueling DQN is defined as:

Lt(θt) = Est,a,r,st+1

[(
yDuelingDQN
t − Q(st, a;θt)

)2]
, (1a)

yDuelingDQN
t = rt + γ max

a
′

Q(st+1, a
′

;θ−), (1b)

Q(s, a;θ, α, β) = V (s;θ, β)+(
A(s, a;θ, α) −

1

|A|

∑
a
′

A(s, a
′

;θ, α)
)
,

(1c)

where Q(s, a;θ) is the value function approximated using
deep networks (i.e., Q-network), consisting of the state value

estimation V (s;θ, β) and the zero-centered advantage function
A(s, a

′

;θ, α), providing separate estimates of the value of the
state and the advantage of actions; θt represents the parameters

of the target network Q(s, a;θ), and θ− is a frozen parameter
of the target network for a fixed number of iterations while

updating the online network Q(s, a;θ) by gradient descent; α,
β represents the parameters of value estimation V (s;θ, β) and
advantage function A(s, a

′

;θ, α) respectively. The Q-network
is trained by sampling mini-batches of experiences from the

replay buffer uniformly at random, calculating loss according

to Eqn.1a and updating parameters.

B. Problem Formulation

Definition 1 (Task). Given a structured data table T of

n tuples with m determinant attributes and one dependent

attribute y, a task denoted as T = {X , Y, f(·)} is defined
by three components: feature space X = {X1, ..., Xn} where
each Xj = [xj1, ..., xjm] includes the values ofm determinant

attributes, label space Y = {y1,, yn} and an objective

predictive function f(·) used to predict the target f(Xj) of
an instance Xj with the goal of f(Xj) = yj .

When a task T is defined, the key point is to find an

optimal function to approximate f(·), where Feature Selection
is required to eliminate redundant and irrelevant features for

dimension reduction and better prediction performance.

Definition 2 (Feature Selection). Given a task T , let F =
{att1, att2, ..., attm} denote the set of determinant attributes
included in X , Feature Selection is the process of selecting
a subset F

′

⊂ F , such that f(·) obtained with XF
′ achieves

better prediction performance for task T , where XF
′ denotes

the feature space of X projected on F ′.

We now give the definitions of seen task and unseen task.

Definition 3 (Seen Task). A predictive task denoted as T s is

defined as a seen task if and only if the label space Y of T
has been observed before.

Definition 4 (Unseen Task). A predictive task denoted as T u

is defined as an unseen task if and only if the label space Y
of T has never been observed before.

For an unseen task T u, the label space Y is invisible,

however, the feature space X is available.

We now give the problem statement.

Fast Feature Selection. Given a set of seen tasks H =
{T s
1 , T s

2 , ..., T s
t } and an unseen task T u which share the same

feature space X , Fast Feature Selection aims to utilize the
information about multiple seen tasks in H to enhance and

accelerate feature selection for the unseen task T u.

The label space of the unseen task T u is invisible before T u

is received. Fast Feature Selection requires a quick response to

the arrival of the unseen task and giving the results of feature

selection with low time cost.

For making full use of information about multiple seen tasks

to guide feature selection on the unseen task, we formulate fast

feature selection as a multi-task learning model for knowledge

generalization across multiple seen tasks, where exploration on

each seen task contributes to knowledge generalization. When

the unseen task is received, the generalized knowledge will

be transferred quickly. Thus, Multi-Task DRL is utilized to

capture the general knowledge through exploration of feature

selection on multiple seen tasks and accumulate the knowledge

by the updating decision mechanism in deep reinforcement

learning. As a result, when the unseen task is received, the

knowledge can be quickly transferred through exploiting the

decision mechanism on the unseen task.

For obtaining the above mentioned decision mechanism,

sufficient exploration on each seen task is required. To this end,

feature selection on each seen task is formulated in a sequential

decision manner [33], where features are sequentially scanned

one by one and each time the scanning feature is decided to

be selected or not.

In our fast feature selection scenario, the common elements

in reinforcement learning are reformulated as follows:

Agent. The agent scans features sequentially and decides

whether to select the feature being scanned (take an action).

Action. For feature selection problem, the action a decides to
select (a = 1) or deselect (a = 0) the feature being scanned.
Environment. The environment interacts with the agent and

provides reward as feedback. As soon as the agent take an

action a (select the scanning feature or not), the original

environment state s will change to a new state s
′

and provide

a reward as feedback simultaneously.

State. Observing the current state of the environment is

important for agent to determine subsequent action. In our

design, for better observing the environment, the state is to

mark the corresponding seen task, record the selected features

and the current scanning position.

396

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Overall proposed model PA-FEAT.

Reward. The reward is a feedback given by the environment

and the agent evaluates the action through the reward. In fea-

ture selection, a well-performing reward function is supposed

to make an accurate evaluation of feature subsets. Inspired by

the existing reward functions [33]–[35], in our framework, the

reward function is defined as:

r = P (CLS(XF
′

), Y), (2)

where F
′

denotes the selected feature subset; XF
′

denotes the

masked feature vectors of samples (the values of unselected

features are masked by zero or mean value); Y denotes the

ground truth of the samples’ labels; CLS(·) denotes the

classifier that predicts the class of each sample; P (·) denotes
the performance of classification given by the selected feature

subset F
′

. In addition, since training an RL-based method

needs to call the reward function frequently, instead of training

a classifier from scratch each time we have a new feature

subset, we pretrain a classifier using all features in advance,

which uses masked feature vectors to do classification. More

details will be introduced in Section IV-A4.

III. PROPOSED METHOD

In this section, we first present the overview of PA-FEAT

and then we elaborate on each module of PA-FEAT.

A. Overview

Our proposed method PA-FEAT consists of three compo-

nents: a novel DRL framework called “FEAT”, a inter-task

resource scheduler called “Inter-task Scheduler” and a tree-

based intra-task optimizer to discover valuable states called

“Intra-task Explorer”, as shown in Fig. 2.

In PA-FEAT, for obtaining the general knowledge across

multiple seen tasks by the updating decision mechanism based

on reinforcement learning, an agent for feature selection is

required to be trained for accumulating experience in interac-

tions with the environments corresponding to all seen tasks.

Specifically, a global agent is initialized at first. Subsequently,

Inter-task Scheduler is invoked to allocate the probability that

the task will be chosen by resources based on progress-related

information of each seen task for the learning balance between

multiple seen tasks. Then, each resource is distributed to a seen

task by Inter-task Scheduler. For each resource, interactions

between the local agent (synchronized from the global agent)

and the corresponding environment to the distributed task will

go on. At the beginning of the interaction, Inter-task Explorer

is invoked to get a customized initial state for deepening the

exploration on the seen task corresponding to the resource.

Finally, the experience generated in the interactions is recorded

into the corresponding replay buffer to the seen task. PA-FEAT

periodically sample a batch from each replay buffer to update

the Q-Network (DNN) of the global agent.

The above process will repeat until the global agent is

well-trained. After a well-performing global agent is obtained,

as soon as an unseen task is received, the global agent can

quickly response through exploiting the Q-Network and give

the feature selection result for the unseen task.

B. FEAT

FEAT is the basic framework to achieve fast feature se-

lection based on Multi-task Deep Reinforcement Learning.

The essential concern of FEAT is to utilize the experience

generated from the interactions between the local agent (by

synchronization from the global agent) and each environment

of seen tasks to update the Q-Network of the global agent.

Here, the global agent and local agents are essentially neural

networks with same architecture, which can map environment

states to actions. As shown in Fig. 2, the local agents are re-

sponsible to interact with multiple environments corresponding

to each seen task and collect experience data. The global agent

uses these experience data to update network parameters and

copies the latest parameters to each local agent after parameter

update (i.e., Synchronize Network in Fig. 2).

397

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: FEAT

1 Initialize θ.

2 Initialize Bk for each seen task k.

3 for iteration = 1, 2, ... do
4 for i = 1, 2, ..., N do

5 Choose a task k evenly from all seen tasks;

6 Get default initial state sk0 ;

7 for t = 0, 1, ..., T − 1 do

8 Get state skt ;

9 Get the number of selected feature Fs from

skt ;

10 if Fs/Fall > mfr then

11 break

12 Use Eqn. (3) to calculate Qθ(akt |skt);
13 Sample action akt ∼ Qθ(akt |skt);
14 Execute actions akt , receive rk

t and reach

the new state skt+1;

15 Collect trajectory τk
0:T ;

16 Compute R̂k
0:T−1 and Ak

0:T−1 on τk
0:T ;

17 for t = 0, 1, ..., T − 1 do

18 Bk = Bk ∪ {(τk
t:t+1,i, A

k
t:t+1, R̂

k
t:t+1)};

19 for i = 1, 2, ...,K do

20 Optimize L in Eqn. (1) w.r.t θ, with batch size

M using samples from Bk;

21 θold ← θ;

22 for j = 1, ...,M do

23 Execute an episode to form trajectory τ j
0:T using

trained policy;

24 Map trajectory τ j
0:T into a feature subset for

unseen task j;

In order to enable the local agent to distinguish which task

corresponding environment it is currently interacting with, we

embed the presentation for each task into the state presentation

the environment. Specifically, we use a vector where each item

is the absolute value of the Pearson correlation coefficient [36]

between each feature and the label set of the corresponding

task as the presentation of the task. Thus, for local agents

in the environment corresponding to different seen tasks, the

reward mechanism is related to the corresponding seen task

respectively and different from each other. Through the task

representation, when an unseen task is received, FEAT can

quickly create an environment for the unseen task and utilize

the global agent with a well-trained Q-Network to select

features for the unseen task.

Experiences are generated and collected in each environ-

ment as follows. Firstly, the local agent of FEAT gets the

environment state and chooses an action to take. Subsequently,

the local agent takes the action and receives reward. The

environment reaches next state and information about action,

state transition and reward are collected. Then, the local agent

gets the new environment state and repeats above operations

from the new state. Experiences will be taken as training data

to update the Q-Network of the global agent.

The whole structure of FEAT can be depicted by the

following equations:

Vθ(skt) = fV (skt), (3a)

Aθ(akt |skt) = fA(skt), (3b)

Qθ(akt |skt) = fE(Vθ(skt)) + fN (Aθ(akt |skt)), (3c)

where θ denotes all the learnable parameters; fV (·) and fA(·)
are DNNs; Aθ represents advantage function, and Vθ repre-

sents value function; fE represents the function to broadcast

a scalar as a vector and fN represents zero centering which

subtract the average value from each item. The key idea of

FEAT is that when the current state skt of the environment

corresponding to Task k is acquired, through Aθ and Vθ ,

the state presentation is mapped to an action distribution

Qθ(akt |skt), as shown in Eqn. (3c).
The main process of FEAT is shown in Algorithm 1. At

first, we initialize learnable parameters θ and a replay buffer

Bk for each seen task k (Line 1-2). Next, we start the loop
for sampling and training (Line 3). Specifically, the loop can

be divided into two phases: a buffer filling phase (Line 4-18)

and a parameter updating phase (Line 19-21).

Buffer Filling Phase. We start the loop for sampling in N
parallel DRL environments (Line 4), which is denoted as

Resource in Fig. 2. At the beginning of the loop, we choose

a seen task k for current DRL environment Ei and obtain

default initial state sk0 for the specific task k (Line 5-6). Then
the simulation process starts from state skinit to terminal state

skT for interacting with the environment and generating expe-

riences (Line 7-14). After an episode completes, we collect

the experiences generated above, and put all the information

about the experiences into buffer Bk (Line 15-18).

Parameter Updating Phase. After collecting the training

samples, we start the training process for each seen task k
(Line 19). We optimize θ by Eqn. (1) with batch size M and

learning rate lr (Line 20-21).
Finally, for each unseen task j, FEAT executes an episode

via trained policy (line23); then maps the formed trajectory

into a feature subset for fast feature selection (line24).

For an unseen task, FEAT mitigates the damage of irrelevant

information in the seen tasks through the combined action of

the different representation of tasks and the learned internal

policy in trained Q Network. Through the task representation

embedded into environment state, the agent can distinguish

which seen task is being learned by perceiving the state of the

current environment. Thus, when an unseen task is received,

FEAT can combine the representation of the new task and

the learned internal policy to make a customized decision and

tends to give a more similar feature selection solution for tasks

with similar representation, so as to alleviate the interference

of seen tasks that are not related to the unseen task.

Note that we introduce max feature ratio (denoted as mfr
in line 10 in Algorithm 1) to limit the maximal number of

398

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

�
Task 1

Seen
Tasks

Task 3Task 2 Task

Replay
Buffer

…Buffer Buffer 2 Buffer 3 Buffer n

Distance
Module

Uncertainty
Module

Load meta Information

Distance
Ratio List

Uncertainty
List

Probability distribution over seen tasks

Resource
Pool

Fig. 3. Overview of Inter-Task Scheduler.

selected features. This is because the computing resources

of analysis systems are limited and the number of optional

features is also limited by the systems due to computing cost

considerations. FEAT utilizes the limitation on the feature

number during training and enables the global agent to find

solutions in a trimmed smaller search space, which not only

makes full use of the computing resources of the system, but

also reduces the search space for the feature selection agent.

C. Inter-task Scheduler

For establishing a balance between the requirements of

multiple tasks that are competing for the limited resources

of the learning system, Inter-task Scheduler improves FEAT

by assigning each seen task a probability of being selected

based on the real-time learning situation dynamically, which

corresponds to line 5 in Algorithm 1. The structure of the Inter-

task Scheduler is shown in Fig. 3. The process of Inter-task

Scheduler can be divided into two phases: Information Col-

lecting Phase and Probability Determination Phase. Firstly,

Inter-task Scheduler collects progress-related information (i.e.,

uncertainty and distance ratio) for each seen task to measure

the learning needs of different tasks (Information Collecting

Phase). Subsequently, Inter-task Scheduler dynamically allo-

cates learning resources for each seen task by adjusting the

probability for each seen task chosen by computing resources

(Probability Determination Phase).

The process of the Information Collecting Phase for each

seen task can be depicted by the following equations:

ψt
k = load(Bk), (4a)

ζt
k = dist(ψt

k, k), (4b)

ξt
k = uncertainty(ψt

k, k). (4c)

Firstly, when Inter-task Scheduler is invoked at moment t,
the load module is used to load recent n trajectories for seen
task k from replay buffer Bk. Each trajectory is mapped to a

selected feature subset, and ψt
k = {F k

1 , ..., F k
n} is the set of

all selected feature subsets. Performance of the feature subsets

on seen task k generated from the n recent trajectories reflect
the learning level of the current FEAT in feature selection for

task k. Thus, we analyze these feature subsets mapped from
the recent trajectories in the subsequent process.

Secondly, for estimating the potential promotion space of

FEAT in feature selection, we propose the dist module to

calculate distance ratio using the average performance of

classifiers trained with each feature subset in ψt
k and the

performance on same metric of a pre-trained classifier with all

features in the dataset. We use the performance of the classifier

trained with all features as a baseline for each seen task,

and simultaneously consider current performance of FEAT in

feature selection on each task and the baseline performance to

evaluate the potential promotion on each seen task.

Next, the uncertainty module is introduced to evaluate the

stability of FEAT for feature selection of each seen task.

Better stability requires that the feature subsets in ψt
k tend

to be more stable with the process of training and a feature

selection solution with less randomness can be given in

the end. The uncertainty module calculates the uncertainty

through collecting and analysing the selection or deselection

of each feature in each subset F k ∈ ψt
k, which can easily

evaluate whether the result of PA-FEAT is stable and provide

a quantified result.

After collecting the progress-related information (i.e., dis-

tance ratio and uncertainty), Information Collecting Phase

is finished and the collected progress-related information is

processed in the Probability Determination Phase.

pt
1:k = output(ζt

1:k, ξ
t
1:k). (5)

Specifically, the output module blends the distance ratio and

uncertainty of each seen task and generates a probability of

being selected by resources for each seen task.

Now, we give the definitions of Distance Ratio and Uncer-

tainty, the core of the dist module and uncertainty module.

Definition 5 (Distance Ratio). Given a set of feature subsets

ψt
k = {F k

1 , F k
2 , ..., F k

n} for training task k at moment t,
Distance Ratio denoted as ζt

k is defined as Eqn. 6.

ζt
k =

P k
all − P k

avg

P k
all

, (6a)

P k
avg =

1

n

∑
Fk

i
∈ψt

k

P (F k
i), (6b)

where P k
all represents the performance (i.e., F1-measure) of

the classifier trained with all features on seen task k, P k
avg

represents the average performance of the classifiers trained

with each feature subset F k
i ∈ ψt

k and the set of feature subset

ψt
k is obtained in the load module.

Definition 6 (Performance Uncertainty). Given a set of

feature subsets ψt
k = {F k

1 , F k
2 , ..., F k

n} for training task k at
moment t, Performance Uncertainty ξt

k is defined as Eqn. 7.

ξt
k = 1 −

1

m

∑m

i=1

∣∣∣∣12 − p(i)

∣∣∣∣ , (7)

where p(i) represents the probability that the i-th feature is
selected by each subset F ∈ ψt

k and m represents the number

of all the features for task k.

399

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Overview of Intra-task Explorer.

Now, we clarify the calculation in the output module.

We first collect the scores of Distance Ratio {ζt
1, ζ

t
1, ..., ζ

t
n}

and Performance Uncertainty {ξt
1, ξ

t
2, ..., ξ

t
n} for all the seen

tasks. Then, the output module integrates Distance Ratio with

Performance Uncertainty by summing the two normalized

scores at first and feeding the result into a softmax function

(as shown in Eqn. 8).

dk =
ζt
k∑n

i=1ζ
t
i

+
ξt
k∑n

i=1ξ
t
i

, (8a)

D = [d1, d2, ..., dn], (8b)

pt
1:k = softmax(D), (8c)

where n represents the number of seen tasks, ζt
i represents the

distance ratio of seen task i, and ξt
i represents the performance

uncertainty of seen task i.

D. Intra-task Explorer

For sufficient exploration of environments corresponding to

each seen task, we design Intra-task Explorer, an optimization

for seeking trajectories with high quality and making full use

of these experiences to enhance the training process. Fig.4

shows the structure of Intra-task Explorer. Intra-task Explorer

integrates the past trajectories and organizes the visited states

into a tree-based structure, called E-Tree. Based on E-Tree,

Intra-task Explorer provides an evaluation mechanism for each

state and can identity the states requiring further explore. Once

Intra-task Explorer is called, this mechanism will be enabled

to return the most exploratory state that has been visited. Then,

that state will be restored and the agent will start to explore

from that state guiding by the current Q-Network of the agent

until the terminal state. The transition trajectory generated in

this process will be collected for training PA-FEAT. Finally,

all novel states encountered will be added to state organization

and information attached to these states will be updated.

1) State Organization: In our fast feature selection, one

major characteristic is that though the state space will be

high-dimensional with the increasing of feature dimension,

the action space is always discrete. This means that no matter

which state the agent is visiting, the number of actions it can

take is limited, namely select or deselect the corresponding

feature. Thus, we yield an Experience Tree (E-Tree) (as shown

in Fig.4) to organize the visited state.

TABLE I
CHARACTERISTICS OF DATASETS.

Dataset #Instances #Features #Seen tasks #Unseen tasks

Emotions 593 72 4 2
Water-quality 1060 16 7 7

Yeast 2417 103 7 7
Physionet2012 12000 41 12 17
Computers 12440 159 7 11
Mediamill 43910 120 7 9
Business 5192 520 7 5

Entertainment 4208 1020 7 5

Specifically, firstly, past trajectories are read from the cor-

responding buffer to the seen task to build E-Tree. Then,

according to the state transition in the trajectories, E-Tree

extends a new leaf node when a new state is visited in

the trajectories. E-Tree will extend a leaf node every time a

transition to a new state occurs until terminal state is coming.

2) Valuable State Identifying: When E-Tree begins to take

shape, the main issue is how to identify the state that is worth

further exploration from numerous visited states. Inspired by

UCT, we design an initial state customization strategy for

valuable-state searching, as illustrated in Fig.4. Specifically,

when searching in E-Tree from root node, the child node F
′

which maximizes ρ in Eqn.9 will be visited in every selection.

ρ(F
′

) = μ̂F
′ +

√
ce ln (TF)

TF,F
′

, (9)

where TF denotes the number of times node F has been

visited, TF,F
′ is the number of times child node F

′

has been

selected in node F , and μ̂F
′ represents the value estimation

for node F
′

, which is formulated as the accumulation perfor-

mance of the feature subset that mapped from the trajectories

with the corresponding state.

After finding the valuable node based on Eqn.9, we argue

that this state is associated with a better trajectory (higher-

performing with as few features as possible). Thus, the agent

is pushed to explore straightly from this valuable state to

find better trajectories and the involved state transitions are

used to train the Q-Network in PA-FEAT, meanwhile, these

trajectories will be also used to update E-Tree. On the one

hand, experience acquired in the training process fuels a trend

where more and more information is available for building the

E-Tree, which enhances the performance of the E-Tree. On

the other hand, the discovery of trajectories with high quality

through the E-Tree will enhance the training process and get

a policy network with more effectiveness and robustness.

For each seen task, PA-FEAT maintains an E-Tree during

training. Each time when ITE is invoked in certain envi-

ronment, E-Tree for the corresponding seen task is quickly

located and the valuable state is returned according to Eqn. 9.

Subsequently, the environment is recovered to the valuable

state and begins interactions with the local agent.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

400

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

1) Datasets.: We use eight real datasets for evaluation,

as shown in Table I. The datasets are available at Mulan1

and PhysioNet Challenge 20122. Detailed description of these

datasets are as follows:

• Emotions contains 593 samples and 72 different charac-

teristics. Each task in this dataset is to predict whether

the song arouses a certain emotion.

• Water-quality consists of 16 physico-chemical charac-

teristics, such as temperature and alkalinity, which are

used to predict the quality of water of Slovenian rivers.

• Yeast contains 103 characteristics which describe micro-

array expressions and phylogenetic profiles for 2417 yeast

genes. Each task is to predict whether the gene belongs

to a functional category (e.g. Metabolism, energy, etc).

• Physionet2012 contains medical index measurement

records of 12,000 ICU stays (e.g. Glucose, etc). Each task

is to predict patient outcomes (e.g. 3-day readmission, in-

hospital death, Interval of SOFA score, etc).

• Computers, Business and Entertainment is from web

pages linked from the “yahoo.com” domain. In these 3

datasets, each task is to predict whether the web page

belongs to a certain subcategory.

• Mediamill contains international broadcast news data

where each video instance is represented as a 120-

dimensional feature vector of numeric features. Each task

is to predict whether the video instance contains certain

concept (e.g. People, Sky, Cloud, etc).

2) Baseline Methods: We compare PA-FEAT with three

categories of baselines: (1) multi-task enhanced methods,

which generalize knowledge from seen tasks to facilitate

feature selection on unseen tasks or can be twisted to address

multi-task enhanced feature selection setting, namely methods

for comparing with ITS (i.e., PopArt [21]) and ITE (i.e., GO-

Explore [25] and RR [23]) and multi-label methods GRRO-

LS [14], Ant-TD [15] and MDFS [16]. (2) single-task feature

selection methods, which learn from scratch for unseen tasks

instead of utilizing information from seen tasks, namely Kbest

[9], RFE [10], SADRLFS [33] and MARLFS [35]. (3) base-

lines with no feature selection, namely DNN and SVM.

• GRRO-LS [14] takes feature relevance, feature redun-

dancy and label relevance into account based on infor-

mation theory for multi-label feature selection.

• Ant-TD [15] is an Ant Colony Optimization (ACO)

based multi-label feature selection method, use RL to get

heuristic information for ants in ACO.

• MDFS [16] a multi-label feature selection method via

manifold regularization, exploiting local label correla-

tions shared by instances and global label correlations.

• PopArt [21] is based on MT-DRL and aims to bal-

ance learning over multiple seen tasks via adapting the

contribution of each task to knowledge generalization

according to reward magnitudes, which is implemented

1http://www.uco.es/kdis/mllresources/
2https://physionet.org/content/challenge-2012/1.0.0/

in our proposed framework FEAT and compared with our

ITS.

• Go-Explore [25] aims to realize efficient exploration

through using a simple policy to navigate in the searching

space from customized initial states, which can provide

valuable experiences for downstream learning methods

(e.g. DRL or Imitation Learning). We implement it under

FEAT for comparing with our ITE.

• Reward Randomization (RR) [23] is a state-of-the-

art approach to realize efficient exploration of DRL-

based methods through a novel reward randomization

mechanism. We implement it with FEAT for comparing

it with our ITE.

• K-Best [9] first ranks features by their mutual information

with the label vector, and then selects the K features with

the highest scores.

• Recursive Feature Elimination (RFE) [10] selects fea-

tures by recursively selecting smaller and smaller feature

subsets.

• SADRLFS [33] is a Single-Agent DRL based method

for single-task feature selection, which trains an RL agent

for each unseen task from scratch.

• MARLFS [35] is a single-task Multi-Agent RL based

method and explores feature subsets by assigning an

agent for each feature to decide selection for correspond-

ing feature.

• Deep Neural Network (DNN) is a fully connected

neural network trained with data without feature selection

for each unseen task. For all networks, we use Adam

Optimizer [37] with a learning rate searched in {1e−1,
1e−2, ..., 1e−5} and batch size in {32, 64, 128, 256}.

• Support Vector Machine (SVM) [38] is a SVM model

trained for each unseen task using data without feature

selection.

3) Evaluation Metrics: We use the performance of unseen

tasks under the selected feature subsets to evaluate the ability

of the feature selection methods. Specifically, we regard the

widely used classification as the downstream data analysis

task, and train an SVM [38] model for each unseen task

using the corresponding selected feature subset to measure

the quality of the feature subset. In this case, we use average

F1-score (Avg F1-score) and average AUC (Avg AUC) among

unseen tasks as two evaluation metrics.

• Avg F1-score evaluates the average performance of fea-

ture selection methods in terms of the F1-score, namely

the harmonic mean of the precision and recall.

• Avg AUC evaluates the average performance of feature

selection methods in terms of AUC, the area under the

Receiver Operating Characteristics (ROC) curve.

4) Implementation Details.: For the sake of robustness, all

reported results are averaged over 5 independent runs. In each

run, we randomly select 70% instances from each dataset to

form the training set for our proposal and other baselines,

and use the remaining part for testing. As for the reward

function mentioned in Eqn. (2), we use DNN as the CLS(·)

401

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

(a) Emotions (b) Water-quality (c) Yeast (d) Physionet2012

(e) Computers (f) Mediamill (g) Business (h) Entertainment

Fig. 5. Impact of max feature ratio over Avg F1-score.

and consider AUC as the P (·). We use Dueling DQN [32]

to train the policy in FEAT and the loss function of Dueling

DQN is shown as Eqn. 1a. In all the experiments, we use

Pytorch 1.8.1 to implement our proposed model, and all the

codes are run on Ubuntu 18.04.2 LTS with 8 GeForce RTX

3090 graphic cards.

TABLE II
COMPARISON ON AVERAGE ITERATION TIME DURING DURING AND

AVERAGE EXECUTION TIME (IN SECONDS)

PopArt Go-Explore RR PA-FEAT
Iter Exec Iter Exec Iter Exec Iter Exec

Emotions 0.596 0.0764 0.438 0.0712 0.853 0.0714 0.771 0.0713
Water-quality 0.338 0.0153 0.331 0.0132 0.685 0.0134 0.506 0.0132

Yeast 1.205 0.1174 0.651 0.1143 1.573 0.1143 1.441 0.1143
Physionet2012 0.686 0.0562 0.579 0.0547 1.117 0.0544 0.911 0.0541
Computers 1.313 0.2845 1.176 0.2800 1.974 0.2804 1.890 0.2804
Mediamill 3.026 0.4479 2.665 0.4423 4.027 0.4422 3.384 0.4423
Business 6.765 0.5889 4.902 0.5813 7.539 0.5820 7.214 0.5824

Entertainment 13.628 1.1660 10.690 1.1452 16.068 1.1481 14.378 1.1455

B. Comparison with Baselines

1) Comparison With multi-task enhanced Baselines: We

compare PA-FEAT with six fast feature selection baselines

and two baselines with no feature selection on eight real-world

datasets on Avg F1-score and Avg AUC. Results are show in

Fig. 5 and Fig. 6. We also examine the efficiency and compare

the time cost of each iteration during training before unseen

tasks arrive and the execution time of each method to provide

feature selection for a single unseen task. The result is shown

in Table II. We have the following findings.

From the figures, we observe that our proposed model con-

sistently outperforms all the other feature selection baselines

in terms of Avg F1-score and Avg AUC on all datasets. The

reason is as follows. The goal of multi-label feature selection

methods, including GRRO-LS, Ant-TD and MDFS, is to find

an optimal feature subset for all currently seen tasks, thus

cannot yield customized feature selection results when facing

different unseen tasks. Although we extend these methods for

unseen tasks by considering historical seen tasks and target

unseen task at the same time, they still fail to fit the target

unseen task since seen tasks with overwhelming numbers

dominate the feature selection results. As for PopArt, reward

magnitude is not accurate to measure the learning difficulty

of each task when there is a large reward variance between

tasks. Go-Explore decouples exploration from exploitation,

which weakens the role of appropriate initial states. RR ignores

that information more valuable than reward randomization can

be obtained from exploration experiences, thus, improvement

brought by adding randomness to reward is far less reliable

than in-depth analysis and utilization of existing experience.

On large datasets Business and Entertainment, PA-FEAT also

consistently outperforms all baselines. When increasing the

max feature ratio, performance of all methods increase sig-

nificantly in the early stage and levels off later. This is

because datasets with large number of features may have more

redundancy, which leads to fewer performance gains when

the number of features used has reached a certain number.

Compared with baselines without feature selection, PA-FEAT

can find feature subsets with better performance on Avg F1-

score and Avg AUC on all datasets. On Physionet2012 dataset,

PA-FEAT outperforms baseline SVM and DNN in terms of

Avg F1-score and Avg AUC using less than 30% of the raw

features. This confirms the effectiveness of feature selection.

When increasing the value of max feature ratio, the Avg

F1-score and Avg AUC of PA-FEAT will go up first and

then get saturated gradually on all eight datasets. However,

we observe that the performance of all baselines will rise first

and then decline on some datasets. Use Emotions dataset as an

example, as shown in Fig. 5(a) and Fig. 6(a), the performance

of our model keeps rising steadily when the limitation on the

402

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

(a) Emotions (b) Water-quality (c) Yeast (d) Physionet2012

(e) Computers (f) Mediamill (g) Business (h) Entertainment

Fig. 6. Impact of max feature ratio over Avg AUC.

TABLE III
ABLATION STUDY (MAX FEATURE RATIO = 1).

Emotions Water-quality Yeast Physionet2012 Computers Mediamill Business Entertainment
F1-score AUC F1-score AUC F1-score AUC F1-score AUC F1-score AUC F1-score AUC F1-score AUC F1-score AUC

Ours: PA-FEAT 0.6944 0.7915 0.5937 0.6564 0.5031 0.6656 0.6293 0.7339 0.2478 0.6773 0.5812 0.7709 0.3264 0.6733 0.4234 0.6883

Ours w/o ITS 0.6798 0.7788 0.5691 0.6489 0.4903 0.6541 0.6152 0.7233 0.2443 0.6654 0.5737 0.7671 0.3006 0.6556 0.4023 0.6609
Ours w/o PE 0.6767 0.7756 0.5683 0.6434 0.4853 0.6520 0.6142 0.7219 0.2412 0.6656 0.5750 0.7674 0.3109 0.6611 0.4118 0.6664
Ours w/o ITE 0.6729 0.7738 0.5678 0.6416 0.4786 0.6432 0.6115 0.7214 0.2294 0.6537 0.5684 0.7657 0.2964 0.6509 0.3893 0.6545
Ours w/o ITS, ITE 0.6633 0.7640 0.5522 0.6265 0.4602 0.6229 0.6053 0.7194 0.2172 0.6435 0.5424 0.7512 0.2895 0.6288 0.3771 0.6453

maximum number of selectable features is gradually relaxing.

While the performance of baselines starts to deteriorate when

the value of max feature ratio exceeds 0.8. This is because
baselines without FEAT for assistance lack a mechanism to

adjust the learning process based on max feature ratio, thus

can only give the largest feature subset whose number of

features does not exceed the limit of max feature ratio.. Three

other baselines implemented with FEAT, including PopArt,

Go-Explore and RR, as mentioned above, have some defects

in multi-task scheduling or effective exploration. Therefore,

an excessively large search space due to the big max feature

ratio will make the performance of them get worse.

All methods under FEAT framework (i.e., PA-FEAT,

PopArt, Go-Explore and RR) need to carry out model training

before the arrival of unseen tasks for quick response to unseen

tasks with well-trained Q-network. In contrast to methods

with FEAT, Ant-TD, GRRO-LS and MDFS consider both the

newly coming unseen task and seen tasks and can’t make any

preparations before unseen tasks come, thus, the three multi-

label methods do not require training process but require more

calculations after receiving unseen tasks. We can observe that

the time cost of each training iteration for methods under

FEAT framework is similar and related to the size of the

dataset, especially the number of raw features. This is because

the more features, the more steps to scan for agents in each

episode of RL and the more time consumed. We can see that

with similar time consumption, our method achieves better

performance. For all methods, We train for 2, 000 iterations
that reach complete convergence.

The average execution time of our method is less than half

a second across all datasets, which ensures the applicability of

our approach in practice. For all methods implemented with

our proposed framework FEAT, including PA-FEAT, PopArt,

Go-Explore and RR, the average execution time is nearly

the same. This is because methods implemented with FEAT

all follow the pattern that Q-network training is carried out

before the unseen task arrives and the learned policy in well-

trained Q-network is directly used after the unseen task arrives.

The difference between these methods is different multi-task

scheduling or search efficiency enhancement strategy during

training process which is compared with our ITS and ITE re-

spectively, while all the execution processes of these methods

for unseen tasks are environment initialization and Q-network

inference. PopArt takes a little more time than others with

FEAT, because of an additional DNN layer to realize target

rescaling. We do not show the average execution time of multi-

label selection methods here, because when extending these

methods’ ability for unseen tasks, they take a very long time

(up to thousands of seconds) to generate feature subsets, which

is several orders of magnitude larger than other methods.

2) Comparison with single-task feature selection baselines:

To further discuss the ability of PA-FEAT to feature selection,

403

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

(a) Water-quality (b) Yeast

Fig. 7. Comparison on average execution time (in seconds) and Avg F1-score.

(a) Water-quality (b) Yeast

Fig. 8. Average reward and distance ratio on each seen task.

we compare PA-FEAT with two traditional methods and two

DRL based methods for single-task feature selection. Different

from the multi-task setting in PA-FEAT, these four methods

conduct feature selection for single task and can only learn

from scratch for unseen task after it arrives instead of utilizing

any information from seen tasks. So they are not suitable for

fast feature selection scenario, especially when the training

time is too long to tolerate. We compare PA-FEAT the pre-

diction performance and execution time for unseen tasks. The

results are shown in Fig. 7. Due to the limited space, here we

only show the results on two datasets, i.e., Water-quality and

Yeast and only report the results on Avg F1-score. The results

on other datasets and Avg AUC share the same trend.

We can observe that compared with SADRLFS and

MARLFS, the response speed for unseen tasks of PA-FEAT

is highly remarkable and a little less competitive for perfor-

mance on Avg F1-score. Although compared with PA-FEAT,

SADRLFS and MARLFS achieve no more than 1.1% gains

on Avg F1-score, their required time at least 9, 991 times

that of PA-FEAT on Yeast dataset. This is because SADRLFS

and MARLFS train a feature selection policy for each unseen

task from scratch separately. Before giving a feature selection

result for a newly coming unseen task, SADRLFS needs

to complete time-consuming network training. The training

process of MARLFS is even more complex than SADRLFS,

because the complexity of the MARLFS increases with the

number of agents and each agent has to maintain its own

policy network, training strategy and memory storage. Thus,

though SADRLFS and MARLFS achieve better results in

optimal feature subset exploration, they have to take much

longer time to yield a feature selection result for a new coming

task, which is intolerable in time-sensitive applications. K-Best

only concentrates on the relevance between each feature and

the specific task, ignoring the dependencies and redundancies

between features, thus although it is computationally efficient

and consumes slightly less time than PA-FEAT, PA-FEAT

achieves much more reliable feature selection results with

comparable time cost. When response to an unseen task, K-

Best ranks features by their mutual information with the label,

while PA-FEAT calculates the Pearson Correlation Coefficient

between each feature and label to form task representation.

Time complexity of mutual information and Pearson correla-

tion coefficient calculation are all O(n) (n denotes the number
of features), and the time cost of DNN inference in PA-FEAT

is negligible compared with the former two operations, thus the

execution times of PA-FEAT and K-Best are similar. RFE, as

a wrapper-based method, tries to fit a specific predictive model

from scratch for each unseen task by gradually removing the

weakest feature, thus requires significantly more time than PA-

FEAT. But due to subject to the strong structured assumptions

of the used predictive model, the selected feature subset

normally cannot compatible with other predictive models.

C. Ablation Study

The ablation study is performed by gradually removing

two key components of PA-FEAT, i.e., Inter-Task Scheduler

(ITS) and Intra-Task Explorer (ITE). As shown in Table

III, complete PA-FEAT achieves an average of 3.49% and

1.89% higher performance than that of PA-FEAT w/o ITS

on the eight datasets in terms of Avg F1-score and Avg

AUC. The improvement confirms that dynamically allocating

resources according to the learning progress of each task

indeed improves the effectiveness of multi-task learning. Also,

the complete model PA-FEAT performs better than PA-FEAT

w/o ITE, as Avg F1-score and Avg AUC increase by 5.62%
and 2.84% on average for eight datasets. This shows that it

is effective to search from the customized initial state based

on our proposed E-Tree. Finally, Avg F1-score and Avg AUC

of the complete model PA-FEAT are 8.97% and 4.86% higher

than that of PA-FEAT w/o both ITS and ITE on average, which

confirms the benefits of putting ITS and ITE together.

To clarify the performance gains from the policy exploita-

tion (PE) in ITE, we add a variant by removing the exploitation

of the learned policy in ITE from the complete model PA-

FEAT (denoted as ours w/o PE in Table III), which means

that the experience data used to construct E-Tree is derived

under a random policy. As shown in Table III, the complete

model PA-FEAT yields better performance than PA-FEAT w/o

PE, where Avg F1-score and Avg AUC increase by 3.10%
and 1.89% on average for eight datasets. This indicates that

utilizing learned RL policy to enhance E-Tree is effective.

In order to further study the benefits brought by our

proposed ITS module, we examine the average reward of

each seen task at the later stage of training and calculate

the distance ratio of each seen task with and without ITS.

The rewards generated during the later stage of training are

stable enough, thus we can take the average of the rewards and

use them to measure each task’s learning difficulty. The lower

the average reward, the higher the difficulty of the task. We

404

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

(a) Water-quality (b) Yeast

Fig. 9. Further Train on Unseen Tasks.

study the benefits of ITS for tasks with different difficulties,

as shown in Fig. 8. We can observe that the improvement

brought by ITS is more obvious on difficult tasks, and this im-

provement gradually becomes stronger as the difficulty of the

task increases. This shows that dynamically allocating learning

resources according to task learning progress makes multi-

task learning more balanced, since it improves the learning

effectiveness on tasks that were previously difficult to master.

D. Further Train on Unseen Tasks

PA-FEAT can also achieve a better result through further

training when the time budget is relatively ample in prac-

tice. When more time is acceptable for calculation, an DRL

environment is initialized for the unseen task at first and

then the agent of PA-FEAT interacts with the corresponding

environment. The experience generated during the interaction

is collected and used for training Q-network. In further training

process, PA-FEAT explores the feature space of each unseen

task under the given time budget, attempting to obtain a more

suitable agent for the unseen task based on the result of the

knowledge generalization process.

To illustrate the effectiveness, we further train each unseen

task for 2, 000 iterations, which takes an average of 1.68
seconds per 100 iterations. The performance growth curves
in terms of Avg F1-score and Avg AUC are shown in Fig.

9. With training for more iterations, Avg F1-score and Avg

AUC will go up first and get saturated gradually after. This

is because the algorithm has reached convergence and more

iterations have little effect on the results after convergence.

V. RELATED WORK

Feature Selection. Feature selection methods can be divided

into single-label and multi-label methods.

Single-label feature selection methods can be categorized

into filter, wrapper and embedded methods. Filter methods

[9], [39]–[41] are fast, simple and efficient, but ignore the

interactions between feature selection and the subsequent

predictors. Wrapper methods [10], [42]–[44] consider the

learning algorithms as evaluation function and require massive

amounts of computation. Embedded methods [6], [45] embed

feature selection into the training phase of learning algorithms

and could achieve supreme performance with the combined

predictors, but not very compatible with other predictors. Tra-

ditional single-label feature selection methods can be subject

to various strong assumptions. For example, K-Best [9] ignores

the dependencies and redundancies between features. RFE [10]

relies on the predictive model used in downstream tasks, which

leads to limited generalizability to other predictive models.

Multi-label feature selection methods, including MDFS

[16], GRRO-LS [14], Ant-TD [15], LLSF [46] and LRFS [47],

can select informative features from multi-label data directly

and attempt to avoid the loss of label information. Although

these methods always take label relevance into consideration,

they handle the balance between multiple labels by evaluating

feature importance through simply adding up the coefficient

corresponding to each label, which cannot estimate accurately

the feature importance for unseen labels.

Balance in Multi-Task Learning. Gradnorm [20] normalizes

the gradients from different tasks according to gradient simi-

larity for balancing multi-task losses. But optimization relying

on the gradient similarity is usually unstable, especially when

there is a large gradient variance within each task itself. A

more recent work [21] studies the problem of parallel learning

of multiple sequential decision tasks and weights different

tasks by their reward magnitudes. However, the above methods

pay more attention to adjusting the contribution of each task

to the update of the model, but rarely study how to divide the

limited learning resources among the tasks.

Search Efficiency for DRL. DRL-based feature selection

methods [11]–[13] are superior in optimal feature subset ex-

ploration due to their powerful global search ability. However,

they usually require time-consuming calculation process to

obtain feature selection results. Many existing works [22]–

[25] study how to make DRL-based methods more efficient.

ICM [22] models curiosity, which serves as an intrinsic reward

signal, to enable the DRL agent to obtain more knowledge

when exploring the search space. A more recent work [23]

introduces a reward randomization mechanism to drive explo-

ration diversity. Go-Explore [24] and its extension [25] attempt

to find the experiences with high-quality by exploring from the

appropriate initial states, but decouple the exploration from the

exploitation of the learning policy.

VI. CONCLUSION

In this paper, we propose a novel progress-aware Multi-

Task Deep Reinforcement Learning (MT-DRL) based method,

called PA-FEAT, for fast feature selection over structured data.

It consists of a basic framework for knowledge generalization

and transfer based on MT-DRL, called “FEAT”, a dynamic

inter-task resource scheduler called “Inter-Task Scheduler”

which can dynamically allocate resources to ensure balanced

learning over multiple historical tasks, and a tree-based intra-

task optimizer called “Intra-Task Explorer” to enable efficient

search over large feature space for each task. We conduct

extensive experiments on eight real-world datasets, and the

results confirm the effectiveness of our proposed model.

ACKNOWLEDGMENT

This work is supported by National Key Research and

Development Program of China (2020YFB1708100), National

Natural Science Foundation of China (62072033) and the Ant

Group.

405

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Li, L. Chen, and A. Kumar, “Enabling and optimizing non-linear
feature interactions in factorized linear algebra,” in Proceedings of

the 2019 International Conference on Management of Data, SIGMOD

Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019.
ACM, 2019, pp. 1571–1588.

[2] M. A. Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich,
“Learning models over relational data using sparse tensors and functional
dependencies,” ACM Trans. Database Syst., vol. 45, no. 2, pp. 7:1–7:66,
2020.

[3] M. Nikolic, H. Zhang, A. Kara, and D. Olteanu, “F-IVM: learning over
fast-evolving relational data,” in Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online

conference [Portland, OR, USA], June 14-19, 2020. ACM, 2020, pp.
2773–2776.

[4] Z. Luo, S. H. Yeung, M. Zhang, K. Zheng, L. Zhu, G. Chen, F. Fan,
Q. Lin, K. Y. Ngiam, and B. C. Ooi, “Mlcask: Efficient management
of component evolution in collaborative data analytics pipelines,” in
37th IEEE International Conference on Data Engineering, ICDE 2021,

Chania, Greece, April 19-22, 2021. IEEE, 2021, pp. 1655–1666.

[5] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for
feature subset selection,” IEEE Transactions on computers, vol. 26,
no. 09, pp. 917–922, 1977.

[6] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[7] T. Xu, D. Wang, and G. Liu, “Banian: A cross-platform interactive
query system for structured big data,” Tsinghua Science and Technology,
vol. 20, no. 1, pp. 62–71, 2015.

[8] R. Khan and M. Gubanov, “Weblens: towards interactive large-scale
structured data profiling,” in Proceedings of the 29th ACM International

Conference on Information & Knowledge Management, 2020, pp. 3425–
3428.

[9] Y. Yang and J. O. Pedersen, “A comparative study on feature selection
in text categorization,” in Proceedings of the Fourteenth International
Conference on Machine Learning (ICML 1997), Nashville, Tennessee,

USA, July 8-12, 1997. Morgan Kaufmann, 1997, pp. 412–420.

[10] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, “Recursive fea-
ture elimination with random forest for ptr-ms analysis of agroindustrial
products,” Chemometrics and Intelligent Laboratory Systems, vol. 83,
no. 2, pp. 83–90, 2006.

[11] M. Kroon and S. Whiteson, “Automatic feature selection for model-
based reinforcement learning in factored mdps,” in 2009 International
Conference on Machine Learning and Applications. IEEE, 2009, pp.
324–330.

[12] S. M. H. Fard, A. Hamzeh, and S. Hashemi, “Using reinforcement
learning to find an optimal set of features,” Computers & Mathematics

with Applications, vol. 66, no. 10, pp. 1892–1904, 2013.

[13] K. Liu, Y. Fu, P. Wang, L. Wu, R. Bo, and X. Li, “Automating
feature subspace exploration via multi-agent reinforcement learning,”
in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2019, pp. 207–215.

[14] J. Zhang, Y. Lin, M. Jiang, S. Li, Y. Tang, and K. C. Tan, “Multi-label
feature selection via global relevance and redundancy optimization,” in
IJCAI, 2020.

[15] M. Paniri, M. B. Dowlatshahi, and H. Nezamabadi-pour, “Ant-td: Ant
colony optimization plus temporal difference reinforcement learning for
multi-label feature selection,” Swarm Evol. Comput., vol. 64, p. 100892,
2021.

[16] J. Zhang, Z. Luo, C. Li, C. Zhou, and S. Li, “Manifold regularized dis-
criminative feature selection for multi-label learning,” Pattern Recognit.,
vol. 95, pp. 136–150, 2019.

[17] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41–75, 1997.

[18] A. Kumagai, T. Iwata, and Y. Fujiwara, “Transfer metric learning for
unseen domains,” in Data Science and Engineering, vol. 5, 2020, pp.
140–151.

[19] W. Fan, K. Liu, H. Liu, Y. Ge, H. Xiong, and Y. Fu, “Interactive
reinforcement learning for feature selection with decision tree in the
loop,” IEEE Transactions on Knowledge and Data Engineering, 2021.

[20] Z. Chen, V. Badrinarayanan, C. Lee, and A. Rabinovich, “Gradnorm:
Gradient normalization for adaptive loss balancing in deep multitask
networks,” in Proceedings of the 35th International Conference on

Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,

July 10-15, 2018, vol. 80. PMLR, 2018, pp. 793–802.

[21] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt, and H. van
Hasselt, “Multi-task deep reinforcement learning with popart,” in The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The

Thirty-First Innovative Applications of Artificial Intelligence Conference,

IAAI 2019, The Ninth AAAI Symposium on Educational Advances in

Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27

- February 1, 2019. AAAI Press, 2019, pp. 3796–3803.

[22] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney,

NSW, Australia, 6-11 August 2017, vol. 70. PMLR, 2017, pp. 2778–
2787.

[23] Z. Tang, C. Yu, B. Chen, H. Xu, X. Wang, F. Fang, S. S. Du, Y. Wang,
and Y. Wu, “Discovering diverse multi-agent strategic behavior via
reward randomization,” in 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[24] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “Go-
explore: a new approach for hard-exploration problems,” arXiv preprint
arXiv:1901.10995, 2019.

[25] Ecoffet, Adrien and Huizinga, Joost and Lehman, Joel and Stanley,
Kenneth O and Clune, Jeff, “First return, then explore,” Nature, vol.
590, no. 7847, pp. 580–586, 2021.

[26] Z. Luo, S. Cai, G. Chen, J. Gao, W. Lee, K. Y. Ngiam, and M. Zhang,
“Improving data analytics with fast and adaptive regularization,” IEEE
Trans. Knowl. Data Eng., vol. 33, no. 2, pp. 551–568, 2021.

[27] Z. Yang, C. Yang, F. Han, M. Zhuang, B. Yang, Z. Yang, X. Cheng,
Y. Zhao, W. Shi, H. Xi, H. Yu, B. Liu, Y. Pan, B. Yin, J. Chen, and
Q. Xu, “Oceanbase: A 707 million tpmc distributed relational database
system,” Proc. VLDB Endow., vol. 15, no. 12, pp. 3385–3397, 2022.

[28] S. Ö. Arik and T. Pfister, “Tabnet: Attentive interpretable tabular
learning,” in Thirty-Fifth AAAI Conference on Artificial Intelligence,

AAAI 2021, Thirty-Third Conference on Innovative Applications of Arti-

ficial Intelligence, IAAI 2021, The Eleventh Symposium on Educational

Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February

2-9, 2021. AAAI Press, 2021, pp. 6679–6687.

[29] M. Cvitkovic, “Supervised learning on relational databases with graph
neural networks,” CoRR, vol. abs/2002.02046, 2020.

[30] S. Rendle, “Scaling factorization machines to relational data,” Proc.
VLDB Endow., vol. 6, no. 5, pp. 337–348, 2013.

[31] S. Cai, K. Zheng, G. Chen, H. V. Jagadish, B. C. Ooi, and M. Zhang,
“Arm-net: Adaptive relation modeling network for structured data,” in
SIGMOD ’21: International Conference on Management of Data, Virtual

Event, China, June 20-25, 2021. ACM, 2021, pp. 207–220.

[32] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and
N. de Freitas, “Dueling network architectures for deep reinforcement
learning,” in Proceedings of the 33nd International Conference on

Machine Learning, ICML 2016, New York City, NY, USA, June 19-

24, 2016, ser. JMLR Workshop and Conference Proceedings, vol. 48.
JMLR.org, 2016, pp. 1995–2003.

[33] X. Zhao, K. Liu, W. Fan, L. Jiang, X. Zhao, M. Yin, and Y. Fu,
“Simplifying reinforced feature selection via restructured choice strategy
of single agent,” in 20th IEEE International Conference on Data Mining,
ICDM 2020, Sorrento, Italy, November 17-20, 2020. IEEE, 2020, pp.
871–880.

[34] K. Malialis, J. Wang, G. Brooks, and G. Frangou, “Feature selection as
a multiagent coordination problem,” CoRR, vol. abs/1603.05152, 2016.

[35] K. Liu, Y. Fu, P. Wang, L. Wu, R. Bo, and X. Li, “Automating
feature subspace exploration via multi-agent reinforcement learning,”
in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA,

August 4-8, 2019. ACM, 2019, pp. 207–215.

[36] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the
correlation coefficient,” The American Statistician, vol. 42, pp. 59–66,
1988.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings, 2015.

[38] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1–27:27,
2011.

406

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

[39] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” J. Mach. Learn. Res., vol. 3, pp. 1289–1305,
2003.

[40] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on pattern analysis and machine intel-
ligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[41] L. Yu and H. Liu, “Feature selection for high-dimensional data: A
fast correlation-based filter solution,” in Proceedings of the Twentieth
International Conference on Machine Learning, (ICML 2003), August

21-24, 2003, Washington, DC, USA. AAAI Press, 2003, pp. 856–863.
[42] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for

feature subset selection,” IEEE Trans. Computers, vol. 26, no. 9, pp.
917–922, 1977.

[43] Y. Kim, W. N. Street, and F. Menczer, “Feature selection in unsupervised
learning via evolutionary search,” in Proceedings of the sixth ACM

SIGKDD international conference on Knowledge discovery and data

mining, Boston, MA, USA, August 20-23, 2000. ACM, 2000, pp. 365–
369.

[44] J. Yang and V. G. Honavar, “Feature subset selection using a genetic
algorithm,” IEEE Intell. Syst., vol. 13, no. 2, pp. 44–49, 1998.

[45] V. Sugumaran, V. Muralidharan, and K. I. Ramachandran, “Feature
selection using decision tree and classification through proximal support
vector machine for fault diagnostics of roller bearing,” Mechanical
Systems and Signal Processing, vol. 21, pp. 930–942, 2007.

[46] J. Huang, G. Li, Q. Huang, and X. Wu, “Learning label-specific
features and class-dependent labels for multi-label classification,” IEEE
Transactions on Knowledge and Data Engineering, vol. 28, pp. 3309–
3323, 2016.

[47] P. Zhang, G. Liu, and W. Gao, “Distinguishing two types of labels
for multi-label feature selection,” Pattern Recognit., vol. 95, pp. 72–82,
2019.

407

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on April 10,2024 at 11:53:23 UTC from IEEE Xplore. Restrictions apply.

