
Semantics Driven Embedding Learning for Effective
Entity Alignment

Ziyue Zhong†, Meihui Zhang†∗, Ju Fan‡, Chenxiao Dou§
†Beijing Institute of Technology, ‡Renmin University of China, §KE Holdings Inc

ziyue_zhong@bit.edu.cn, meihui_zhang@bit.edu.cn, fanj@ruc.edu.cn, douchenxiao001@ke.com

Abstract—Knowledge-based data service has become an
emerging form of service in the world wide web (WWW). To
ensure the service quality, a comprehensive knowledge base has
to be constructed. Knowledge base integration is often a primary
way to improve the completeness. In this paper, we focus on
the fundamental problem in knowledge base integration, i.e.,
entity alignment (EA). EA has been studied for years. Traditional
approaches focus on the symbolic features of entities and propose
various similarity measures to identify equivalent entities. With
recent development in knowledge graph representation learning,
embedding-based entity alignment has emerged, which encodes
the entities into vectors according to the semantic or structural
information and computes the relatedness of entities based on
the vector representation. While embedding-based approaches
achieve promising results, we identify some important infor-
mation that are not well exploited in existing works: 1) The
neighboring entities contribute differently in the EA process,
and should be carefully assigned the importance in learning the
relatedness of entities; 2) The attribute values (especially the
long texts) contain rich semantics that can build supplementary
associations between entities.

To this end, we propose SDEA - a Semantics Driven entity
embedding method for Entity Alignment. SDEA consists of two
modules, namely attribute embedding and relation embedding.
The attribute embedding captures the semantic information from
attribute values with a pre-trained transformer-based language
model. The relation embedding selectively aggregates the seman-
tic information from neighbors using a GRU model equipped
with an attention mechanism. Both attribute embedding and
relation embedding are driven by semantics, building bridges
between entities. Experimental results show that our method
significantly outperforms the state-of-the-art approaches on three
benchmarks.

Index Terms—Entity Alignment, Semantics Driven, Trans-
former, Knowledge Base Integration

I. INTRODUCTION

Knowledge-based data service has become an emerging and
essential form of service in recent years. Many applications,
including knowledge-based question answering [1], semantic
search [2], and recommender systems [3], leverage knowledge
bases to improve their overall service quality and user satis-
faction.

The underlying knowledge base (KB), as the foundation
of the knowledge-based service, needs to be well-constructed.
There are a growing number of large-scale knowledge bases
available on the web, such as YAGO [4], DBpedia [5], Free-
base [6], and IMDb [7], in which the data are complementary
and partially duplicated. A primary way to obtaining a more

∗ contact author

𝑒𝑒4

𝑒𝑒6

𝑒𝑒7

𝑒𝑒5

𝐾𝐾𝐺𝐺1 𝐾𝐾𝐺𝐺2

𝑣𝑣2

𝑒𝑒2

𝑒𝑒8

𝑒𝑒9

𝑣𝑣1

𝑒𝑒3

𝑒𝑒1

𝑣𝑣3

𝑟𝑟1

𝑟𝑟2
𝑟𝑟3

𝑟𝑟4

𝑟𝑟5
𝑟𝑟6

𝑟𝑟7

𝑎𝑎1

𝑎𝑎2
𝑎𝑎3

Semantically Related

Implicit Association

Funchal "Cristiano was born
in Funchal… "

"One of the world's most
marketable and famous athletes... "

"… considered the best
player in the world. "

Implicit Association

Fig. 1. Features in knowledge graph, where e, r, a, v represent entities,
relations, attributes, and values respectively. In addition to the direct relations
between entities (gray arrows), the information in textual values also indicates
implicit associations (dashed lines), either directly through the attribute values,
or indirectly through the entities’ neighbors. e2 represents a general concept,
which has a large number of neighboring entities.

comprehensive knowledge base is to perform an integration
process over various knowledge bases.

Entity alignment, as a major step of knowledge base integra-
tion, has been exploited extensively in the past and a variety of
methods have been proposed. With recent advances in the field
of knowledge graph representation learning, embedding-based
methods become popular in the problem of entity alignment
for knowledge graphs (KG, the major form of KB), mainly
because they are free from expert participation and achieve
competitive performance. These methods commonly divide
entity alignment pipeline into two modules: entity embedding
and entity alignment (based on the embeddings) [8]. The
entity embedding module encodes entities into a vector space,
whereas the entity alignment module captures the correspon-
dence of embedding vectors with seed alignment as training
data. To encode the entities, most of current research works
commonly use two types of embedding: relation embedding
and attribute embedding.

Relation embedding methods capture the structural informa-
tion. The first type of methods exploit the relational association
(e.g., ri in Fig. 1) between entities. Some of them interpret a
relation as the translation from one entity to another and learn
entity and relation embeddings together [9]–[14]. Others use
multi-hot vector to express relation names and learn part of
the entity embeddings from relation vectors [15]. The second
type of methods use graph neural networks (e.g., GCNs [16]
or GATs [17]) to learn entity embeddings from the topological
connections [15], [18]–[22]. The third type of methods exploit

2127

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00205

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
02

05

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

the long-term relational dependencies [14], [23]. They learn
entity embeddings by transmitting information through the
relational paths, i.e., a set of nose-to-tail linked triples (e.g.,
(e1, r1, e2), (e2, r2, e3) in Fig. 1).

Attribute embedding methods capture the entities’ additional
information from attributes. The first type of methods exploit
the correlations among attributes. Some of them use multi-
hot vector to encode attribute names (e.g., ai Fig. 1) and learn
part of the entity embeddings from attribute vectors [15], [18].
Others use Skip-gram [24] to learn attribute embeddings from
attribute name correlations and take the average of attribute
embeddings as part of the entity representations [10]. The
second type of methods learn initial or part of the entity
embeddings from entity names/descriptions [15], [19], [20],
[25].

While embedding-based entity alignment has shown its
promise via joint learning from relations and attributes, we
notice that some important information in KG is neglected or
not well used. From a careful analysis on various KGs, we
have the following key observations:

1) Some entities in KG, which are usually the ones repre-
senting general concepts like people, have a large number of
neighboring entities (e.g., e2 in Fig. 1). Such entities normally
contribute less or even introduce noisy information in the
entity alignment process. Further, when comparing an entity
pair from two KGs, the semantically related neighbors (e.g., e4
and e7 in Fig. 1) are more helpful in either providing evidence
for the alignment or identifying the conflicts for the unmatched
pairs. Existing structure-based relation embedding methods do
not well identify the contributions of the neighbours. Specif-
ically, TransE-based [9]–[14] and GCN-based [15], [18]–[20]
methods have no mechanism to distinguish the neighbors.
GAT-based methods [21], [22] can distinguish the entity
neighbors to some extent by learning weights from the graph
structure. However, solely relying on the structure features
is insufficient to identify the contributions as it ignores the
semantics carried with the entities.

2) The attribute values (especially the long texts) usually
contain rich information, which in many cases can build
new associations between entities. On the one hand, the
information inherent in the textual values can suggest implicit
relationships between the entities (e.g., the new association
between attribute value v1 and v3 in Fig. 1). On the other hand,
the textual attributes may also indicate associations with the
surrounding entities, implying indirect relationships through
the neighbors (e.g., the new link from attribute value v2 to
entity e5, and indirectly to e1). According to our statistics,
long textual attributes are not uncommon in KBs. For example,
more than 15% of attributes contain long textual values (longer
than 50 words) in Freebase, and more than 8% in DBpedia.
We believe that such information is not only helpful in building
bridges between entities, it is also highly reliable since it is
drawn based on semantics. Nevertheless, joint learning from
attributes and neighbor entities is still unexplored in existing
works.

To well capture the semantics inherent in the entities (mostly

in the long textual attribute values) and effectively identify the
contribution of the neighbors in the alignment process, in this
paper, we propose SDEA – a Semantic-Driven entity embed-
ding method for Entity Alignment. We employ two embedding
modules, namely attribute embedding and relation embedding.
In the attribute embedding module, a transformer-based pre-
trained language model (or transformer for short) [26] is used
to get initial embeddings of each entity. On top of that, the
module captures the fine-grained semantics and the direct as-
sociations of entities. Further, the relation embedding module
learns the contribution of neighboring entities from the fine-
grained semantics of their attribute embeddings through at-
tention mechanism and selectively aggregates the information
from neighbors. Additionally, a joint representation learning is
performed from the attribute embedding (holding the seman-
tics of the entity) and the relation embedding (aggregating
the semantics from the neighbors) to discover the indirect
associations between entities.

To summarize, our contributions are summarized as follows:
• We identify that the semantics embedded with the en-

tities play a crucial role in discovering the relatedness
of entities, and propose a novel semantics-driven entity
embedding method for entity alignment in knowledge
bases.

• We design an effective learning framework equipped with
an attribute embedding module and a relation embedding
module that is capable of capturing the hidden semantics
from the entity attributes and discerning the importance
of the neighbors.

• We conduct extensive experiments to evaluate the effec-
tiveness of our approach on three benchmark datasets:
DBP15K [10], SRPRS [23], and OpenEA [8]. The ex-
perimental results show that we significantly outperform
the state-of-the-art approaches.

The rest of the paper is organized as follows. Section II
defines the problem of entity alignment and discusses the
design considerations of our method. Section III describes the
proposed entity alignment framework. Section IV presents the
implementation details. Section V presents the experimental
results. Section VI discusses related works and finally Sec-
tion VII concludes the paper. More details are available in a
technical report1.

II. DEFINITIONS AND SOLUTION DESIGN

In this section, we first introduce the formal definitions of
knowledge graph (KG) and entity alignment (EA). Then we
discuss the design considerations of our method.

A. Problem Definition

Definition 1 (Knowledge Graph). A knowledge graph (KG) is
denoted as KG = {E,R,A, V, Tr, Ta}. ei ∈ E, rj ∈ R, ak ∈
A, and vl ∈ V represents an entity, a relation, an attribute, and
an attribute value respectively. (ei, rj , ek) ∈ Tr(ei) denotes a
relational triple, and (ei, aj , vk) ∈ Ta(ei) denotes an attributed

1https://github.com/zhongziyue/SDEA/raw/main/paper/SDEA-technical.pdf

2128

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

triple. Relational triples can also be represented as (h, r, t),
where h is called head entity and t is called tail entity.

Definition 2 (Entity Alignment in KG). Given two KGs
(KG1 and KG2) and a function E that maps an entity to
its real-world object, the goal of entity alignment is to find all
matching pairs such that:

P̂ ⊂ KG1 ×KG2, (ei, ej) ∈ P̂ ⇐⇒ E(ei) = E(ej) (1)

where (ei, ej) is a matching pair and P̂ is the set of the
matching pairs. Usually, the left entity of the equivalent entity
pair (i.e., ei) is called source entity and the right entity of the
equivalent entity pair (i.e., ej) is called target entity.

As our paper does not assume one-to-one alignment across
KGs, for each source entity, the target entities are ranked with
the similarity score calculated by the alignment model. The
higher score indicates the more likelihood that the target entity
is equivalent to the source entity.

Remarks. Note that the current version of SDEA targets
binary relations which are adopted in most existing KGs, such
as YAGO [4], DBpedia [5] and Freebase [6]. We will explore
more interesting directions, such as n-ary relations and richer
KB structures in the future work.

B. Design Considerations

1) Identifying the Contribution of Neighbors: It is impor-
tant to identify the contribution of neighboring entities in entity
alignment. There are two aspects of reasons we have observed
from real-world KGs, which motivate our design:

a) Concept granularity. Regarding the granularity, neigh-
boring entities can be broadly categorized into two types:
entities representing general concepts and entities representing
specific concepts. Intuitively, specific-concept entities should
contribute more than general-concept entities in entity align-
ment. Specific-concept neighbours can provide fine-grained in-
formation from multiple dimensions, whereas general-concept
entities only provide abstract information or a broad category
information. Further, general-concept entities normally link to
a large number of entities (e.g., 〈person〉 in YAGO3 link to
2,231,431 entities). As such, transmitting information from
general-concept entities may introduce noise from irrelevant
entities. Take the two KGs KG1 and KG2 in Fig. 2 as an
example. Consider the two blue entities e1,1 〈C._Ronaldo〉
and e2,5 〈Cristano_Ronaldo〉 to be aligned from the two
KGs. Three of the surrounding entities of e1,1 〈C._Ronaldo〉,
including e1,3 〈C.D._Nacional〉, e1,4 〈Real_Madrid_C.F.〉,
and e1,5 〈Academia_Sporting〉, are specific-concept entities.
These entities provide concrete information about the football
clubs and the training facility, and thus they are discriminative
and very useful in identifying who the person is. In contrast,
e1,2 〈Portugal〉, e1,6 〈player〉 and e1,7 〈person〉 only provide
the nationality and broad category information, which is of
little use for aligning entities with the same type. Similarly,
entities e2,5 〈Cristano_Ronaldo〉 has two neighbors with
specific concepts and three with general concepts.

b) Semantic relevance. Considering the neighboring enti-
ties of a pair of to-be-aligned entities, we observe that the
contribution of neighbors also differs with respect to whether
a neighboring entity in one KG has a semantically related
counterpart in the other KG. The neighbors with semanti-
cally related counterparts tend to contribute more in both
aligning matching entities and identifying different entities.
On the one hand, for entity pairs that are truly matched,
their semantically related neighbors can provide direct extra
evidence for the alignment. For example, when aligning e1,1
〈C._Ronaldo〉 and e2,5 〈Cristano_Ronaldo〉 in Fig. 2, there
are four pairs of semantically related neighbors: e1,7 〈person〉
and e2,4 〈people〉 show that they are of the same type; e1,2
〈Portugal〉 and e2,7 〈Portugal〉 match them on the nation-
ality; e1,3 〈C.D._Nacional〉 and e2,6 〈C.D._Nacional〉, e1,4
〈Real_Madrid_C.F.〉 and e2,9 〈Real_Madrid_C.F._players〉
indicate that both serve in the same teams. As such, the four
pair of neighbors provide strong hints that 〈C._Ronaldo〉
and 〈Cristano_Ronaldo〉 are very likely to be the same
person. In contrast, entities like e1,5 〈Academia_Sporting〉
and e2,8 〈Madeira〉 have no strongly related entities as
matching evidence, and therefore, are unable to contribute
much in the alignment. On the other hand, when comparing
entity pairs that are not matched, the semantically related
neighbors are helpful in identifying conflicting facts. Consider
the example again. When comparing e1,8 〈F.W._Bruskewitz〉
and e2,5 〈Cristano_Ronaldo〉, we identify two pairs of se-
mantically related neighbors: e1,10 〈United_States〉 and e2,7
〈Portugal〉 conflict on the nationality; e1,9 〈Milwaukee〉 and
e2,8 〈Madeira〉 conflict on the place of birth. Therefore, the
two entities are more likely to be different persons.

Taking concept granularity and semantic relevance into
consideration, we believe that the neighboring entities should
be assigned different importance concerning their contribution
in the entity alignment process. Intuitively, neighbors carrying
specific concepts and having strong related entities should
be paid close attention (illustrated in dark red in Fig. 2).
Contrarily, neighbors representing general concepts and with
no related entities should be given low importance (illustrated
in light red in Fig. 2). Both concept granularity and semantic
relevance of the entities are regarding the semantic features.
To well capture the semantics of the entities, which are
mostly hidden in the textual attribute values, we design to
use a transformer-based architecture that has been proved
to be powerful in capturing the dependencies among words.
With training data, the transformer model can be fine-tuned
to pay more attention to the effective features. Further, to
quantify the importance of neighboring entities, we adopt
attention mechanism to learn the contribution of neighbors and
selectively aggregate the information to represent the relations.
As such, we learn an effective mapping between the semantic
features and the neighbor contributions with training data.

2) Handling the Alignment of Long-tail Entities: Long-tail
entities are the entities having few triples and far from seed
entities (the pre-aligned entities used as training data) [23].
Aligning long-tail entities is difficult because they have little

2129

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

United_States

Name Value
name Fabian Bruskewitz
workPlace Roman Catholic Church
startYear 1992
endYear 2012

Name Value
comment Fabian Wendelin Bruskewitz (born in

Milwaukee on September 6, 1935) is
an American prelate and retired in
2012.

KG1 KG2

𝑒𝑒1,1𝑒𝑒1,3

𝑒𝑒1,4 𝑒𝑒1,6

𝑒𝑒1,2

𝑒𝑒1,7 𝑒𝑒1,8 𝑒𝑒1,10

𝑒𝑒1,9

𝑒𝑒2,1

𝑒𝑒2,3

𝑒𝑒2,2

Real_Madrid
_C.F.

player
General Concept

C.D._Nacional

Portugal
General Concept

C._Ronaldo person
General Concept

Milwaukee
Pontifical_Gregorian

_University

Roman_Catholic
F.W._

Bruskewitz

Fabian_
Bruskewitz

High contribution neighbors (specific concepts & high semantic relevance)
Low contribution neighbors (general concepts / low semantic relevance)

A pair of normal entities (to be aligned)
A pair of long-tail entities (to be aligned)

Relations
Attributes

𝑒𝑒2,5

𝑒𝑒2,6

𝑒𝑒2,7

𝑒𝑒2,9

Real_Madrid_
C.F._players

C.D._Nacional

Cristiano_
Ronaldo

Portugal
General Concept

𝑒𝑒2,4

people
General Concept

Implicit Semantic
Association

𝑒𝑒2,8

Academia_
Sporting
𝑒𝑒1,5

Madeira
General Concept

①

①

②

②

③

③④ ④

⑤
⑥

⑦

⑤

⑥⑦

Fig. 2. An illustrating example with two pairs of to-be-aligned entities, where e1,i and e2,j denote the entities in KG1 and KG2 respectively, blue nodes
represent normal entities and green nodes represent long-tail entities. The matching information is highlighted in the same background color and labeled
with the same serial number. The attributes of e1,1 and e2,5 are omitted for the ease of presentation. Note that the overlapping of entity names is for better
understanding and there is no assumption that entity names need to be consistent.

information in the attributes and few neighbors with rela-
tions, which are inadequate to support the similarity learn-
ing in the alignment. Consider our real-world example in
Fig. 2. The two green nodes e1,8 〈F.W._Bruskewitz〉 and e2,1
〈Fabian_Bruskewitz〉 represent the long-tail entities. Both
have only 3 neighbors (vs. 6 and 5 neighbors for normal
entities e1,1 and e2,5). Out of the three neighbors, they only
match on very general entities, i.e., e1,7 〈person〉 and e2,4
〈people〉, which are of little use for alignment. Further, they
do not contain directly related attributes. In fact, entity e2,1
〈Fabian_Bruskewitz〉 only has one single attribute comment
with a long textual value. Simple similarity measures will not
be able to detect the matching information hidden in the text,
and as a result, fail to align the two entities. From a careful
examination on real-word knowledge bases, we observe that
in many cases long textual attributes (e.g., comment) contain
rich and meaningful information, which is of great use in
inferring associations between entities.

a) Direct association through attributes. We notice that in
real-world KGs, more often than not, the to-be-aligned entity
pairs do not have matching attributes. As in our example,
none of the four attributes of e1,8, i.e., name, workPlace,
startYear, and endYear, directly matches with the attribute
comment of e2,1. However, a closer comparison reveals that
the attribute values of truly matched entity pairs do agree
on the underlying semantics to a large extent. As shown in
the example, the comment text indeed contains information
matched with the values of e1,8 with high coherence. As a
result, with a smart model capable of capturing the semantics
embedded in the (long textual) attribute values, new associ-
ations can be built between the entities, making up for the
scarce information of long-tail entities.

b) Indirect association through neighbors. Apart from the
associated attributes, entities connect to a number of neighbors
via relations. We observe that the long textual attributes are
also helpful in relating entities through neighbors. In other
words, it creates indirect associations between entities. Take
the example in Fig. 2. Entity e1,8 〈F.W._Bruskewitz〉 has
two neighbors, e1,9 〈Milwaukee〉 and e1,10 〈United_States〉,
specifying his birthplace and nationality. Note that they have
no matching information at entity level in KG2. However, both
information are mentioned in the long text attribute comment.
Therefore, if we can identify the semantic association between
comment and e1,9 (e1,10), an indirect link can be built
between e1,8 and e2,1 through the neighbors.

The key to build the direct associations between entities is to
uncover the fine-grained semantics inherent in the attributes,
which is in line with our design for capturing the concept
granularity and semantic relevance. We resort to transformer
model to learn expressive representations, and the association
can be derived from the the distance between the learnt
representations of attributes. Further, to build the indirect
association, we need to consider information from both at-
tributes and neighbors jointly. To this end, we employ an
additional MLP (Multi-Layer Perceptron) layer to learn a joint
representation combining the attribute embedding of an entity
with its relation representation aggregated from neighbors. In
this way, we discover new associations for aligning long-tail
entities.

III. SEMANTICS-DRIVEN ENTITY EMBEDDING

Based on the aforementioned design considerations, we
introduce SDEA – a Semantics-Driven entity embedding
framework for Entity Alignment. As shown in Fig. 3, SDEA

2130

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

Attribute Embeddings of Neighbors in 𝑁𝑁 𝑒𝑒

Fabian Bruskewitz⋯ Roman Church⋯ Fabian perlate⋯ Pontifical College⋯

BERT

Attributes’ Sequence Form of 𝑒𝑒: 𝑆𝑆 𝑒𝑒

𝐸𝐸1,1

𝑡𝑡1,1

𝑇𝑇1,1

𝐸𝐸1,𝑚𝑚1

𝑡𝑡1,𝑚𝑚1

𝑇𝑇1,𝑚𝑚1

⋯

⋯

⋯

⋯

𝐸𝐸 CLS

[CLS]

𝐶𝐶

𝐸𝐸𝑛𝑛,𝑚𝑚𝑛𝑛

𝑡𝑡𝑛𝑛,𝑚𝑚𝑛𝑛

𝑇𝑇𝑛𝑛,𝑚𝑚𝑛𝑛

𝐸𝐸𝑛𝑛,1

𝑡𝑡𝑛𝑛,1

𝑇𝑇𝑛𝑛,1

⋯

⋯

⋯

Tokens of 𝑣𝑣1 Tokens of 𝑣𝑣𝑛𝑛

⋯

⋯

⋯

MLP

BERT

Attributes’ Sequence Form of 𝑒𝑒′: 𝑆𝑆 𝑒𝑒′

𝐸𝐸1,1
′

𝑡𝑡1,1
′

𝑇𝑇1,1
′

𝐸𝐸1,𝑚𝑚1
′

′

𝑡𝑡1,𝑚𝑚1
′

′

𝑇𝑇1,𝑚𝑚1
′

′

⋯

⋯

⋯

⋯

𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶

[CLS]

C

𝐸𝐸𝑛𝑛′,𝑚𝑚𝑛𝑛′
′

′

𝑡𝑡𝑛𝑛′,𝑚𝑚𝑛𝑛′
′

′

𝑇𝑇𝑛𝑛′,𝑚𝑚𝑛𝑛′
′

′

𝐸𝐸𝑛𝑛′,1
′

𝑡𝑡𝑛𝑛′,1
′

𝑇𝑇𝑛𝑛′,1
′

⋯

⋯

⋯

Tokens of 𝑣𝑣1′ Tokens of 𝑣𝑣𝑛𝑛′
′

⋯

⋯

⋯

MLPMargin Ranking Loss

GRU Model

𝐻𝐻𝑎𝑎(𝑒𝑒1) 𝐻𝐻𝑎𝑎(𝑒𝑒2) 𝐻𝐻𝑎𝑎(𝑒𝑒𝑛𝑛)

ℎ1 ℎ2 ℎn⋯

⋯

𝐻𝐻𝑟𝑟(𝑒𝑒)

𝐻𝐻𝑎𝑎(𝑒𝑒)
⨁

𝐻𝐻𝑚𝑚(𝑒𝑒)

ℎ1 ℎ2 ℎ𝑛𝑛⋯

⊕
𝛼𝛼1 𝛼𝛼2

𝛼𝛼𝑛𝑛

MLP

GRU Model

𝐻𝐻𝑎𝑎(𝑒𝑒1′) 𝐻𝐻𝑎𝑎(𝑒𝑒2′) 𝐻𝐻𝑎𝑎(𝑒𝑒𝑛𝑛′
′)

ℎ1′ ℎ2′ ℎn′
′⋯

⋯

𝐻𝐻𝑟𝑟(𝑒𝑒′)

𝐻𝐻𝑎𝑎(𝑒𝑒′)

ℎ1′ ℎ2′ ℎ𝑛𝑛′
′⋯

⊕
𝛼𝛼1′ 𝛼𝛼2′

𝛼𝛼𝑛𝑛′
′

⨁ MLP

𝐻𝐻𝑚𝑚(𝑒𝑒′)𝐻𝐻𝑎𝑎(𝑒𝑒) 𝐻𝐻𝑎𝑎(𝑒𝑒′)𝐻𝐻𝑟𝑟(𝑒𝑒) 𝐻𝐻𝑟𝑟(𝑒𝑒′)

Margin Ranking Loss

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒): 𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒′):

Relation Embedding Module

Attribute Embedding Module
Attribute Embeddings of Neighbors in 𝑁𝑁 𝑒𝑒′

Fig. 3. The framework of proposed method. e and e′ denote the entities in KG1 and KG2 respectively. Ha(e), Hr(e), and Hm(e) denote the attribute
embedding, relation embedding, and joint embedding of e respectively. Hent(e) denotes the final entity embedding.

mainly consists of an attribute embedding module and a
relation embedding module. The basic idea of SDEA is to
generate an embedding-based representation Hent(ei) for each
entity ei by utilizing the two modules.
• The attribute embedding module computes an attribute

embedding, denoted by Ha(ei), by capturing semantic
information in ei’s attribute values, especially long text.

• The relation embedding module computes a relation em-
bedding, denoted by Hr(ei) by learning the contribution
of neighbors and selectively aggregating the information.

In this section, we first present how to compute attribute
embedding Ha(ei) and relation embedding Hr(ei) in Sec-
tions III-A and III-B respectively. Then, we discuss how to
compute the joint representation Hent(ei) based on Ha(ei)
and Hr(ei) in Section III-C.

A. Attribute Embedding Module

The attribute embedding module aims to capture the seman-
tics association between entities from their attribute values.
From our observation, the attribute values consist of not only
short texts and numbers (in structured fields), but also long
sentences (in textual fields). Capturing the semantic informa-
tion from attribute values has always been a challenge. On
the one hand, conventional string similarity-based approaches

fail to handle heterogeneity in the text, such as synonyms,
polysemy words, abbreviations, and numbers with different
precision and units. On the other hand, the alignment of
attributes raises another challenge due to the heterogeneity of
different KG schema. Due to these challenges, most existing
studies on entity alignment avoid handling attribute values.
Instead, they only consider to capture semantics from entity
names or descriptions.

To address the problem, we propose to employ a trans-
former model [27], which has achieved the start-of-the-art
performance in capturing the semantic information of texts,
to handle the heterogeneity in the text. Further, to handle the
heterogeneity of different KG schema, we capture the fine-
grained semantics by combining all attribute values of an entity
as a whole, and then capture the semantic associations between
two entities. Our design consideration is that the to-be-aligned
entity pairs sometimes do not have matching attributes, es-
pecially for the long-tail entities. In this case, the semantic
associations cannot be found based on attribute alignment. One
highlight of using transformer is that it pays more attention
to the features that conveying the text semantics during fine-
tuning. As a result, we do not need to pay special attention to
the order of attribute values. Instead, we can simply arrange
the attribute values of entities in each knowledge graph in the

2131

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: KG transformation method
Input:

E: the entity set in KG
A: the attribute set in KG
Ta: the set of attributed triples in KG

Output:
S: the set of generated attribute sequences of entities in

E
1 Ô(A)← initialize a random order of A
2 for ei ∈ E do
3 for aj ∈ Ô(A) do
4 for (ei, aj , vk) ∈ KG do
5 append (ei, aj , vk) to T̂a(ei)
6 end
7 end
8 for (ei, aj , vj) ∈ T̂a(ei) do
9 append vj to V̂ (ei)

10 end
11 concatenate the values in V̂ (ei) to form S(ei)
12 end

same order to form a contextual relationship between attribute
values, which are then fed into the transformer model.

For ease of presentation, we take BERT [26], an represen-
tative model of transformer, as an example to describe our
method as follows. We formalize attribute embedding as a
downstream task of BERT, i.e., fine-tuning a pre-trained BERT
to encode attribute values of entity ei into attribute embedding
Ha(ei) in the following two phases.

1) Data Preprocessing: This phase aims to transform at-
tribute values of entity ei into a sequence, i.e., a series of
tokens, which can be then fed into our BERT model.

Algorithm 1 describes the overall procedure of this step.
Recall that, in Definition 1, we define A as the set of attribute
names in KG and Ta(ei) as the set of attributed triples for
entity ei (i.e., ei is the head entity of all triples in Ta(ei)).
Initially, the algorithm generates an order of all attributes in
A, denoted as Ô(A) = [a1, a2, ..., an], where ai ∈ A and
{ai}|ni=1 = A (line 1). Then, it organizes the triples in Ta(ei)
in line with the order of Ô(A) (Line 3-7), i.e.,

T̂a(ei) = [(ei,a1, vk1), (ei,a2, vk2), ..., (ei,an, vkn)] (2)

where T̂a(ei) for all entities follow the same order. Finally, the
algorithm concatenates attribute values from triples in T̂a(ei)
to form a sequence of tokens (Line 8-11), ie.,

V̂ (ei) = [v1, v2, ..., vn] (3)
S(ei) = “t1,1 ... t1,m1

... tn,1 ... tn,mn
” (4)

where ti,1, ..., ti,mi is the tokens of vi. For example, Fig. 4
illustrates the procedure in Algorithm 1.

2) Attribute Encoding: This phase takes the sequence gen-
erated in the previous step as input, and aims to transform the
sequence into an embedding via our BERT model.

To this end, we use a pre-trained BERT model and an
MLP (Multi-Layer Perceptron) layer to obtain an attribute
embedding vector Ha(ei) by encoding the attribute sequence

Fabian_Bruskewitz, name, "Fabian Wendelin Bruskewitz"
⟨Fabian_Bruskewitz, workPlace, "Roman Catholic Church"⟩
Fabian_Bruskewitz, nationality, "American"

Transformation with Attribute Order: �𝑂𝑂 𝐴𝐴 = [name, nationality, workPlace]

𝑆𝑆(Fabian_Bruskewitz)
= "Fabian Wendelin Bruskewitz American Roman Catholic Church"

𝑒𝑒𝑖𝑖 = ⟨Fabian_Bruskewitz⟩

𝑇𝑇𝑎𝑎 𝑒𝑒𝑖𝑖 =

Fig. 4. An example of the transformation procedure.

S(ei) of entity ei. The process are divided into the following
three steps: 1) the first step adds the special token “[CLS]”
in the beginning of sequence S(ei), so as to meet the in-
put requirement of BERT, and results in an input sequence
“[CLS]” || S(ei) (e.g., “[CLS] Fabian Wendelin Bruskewitz
American Roman Catholic Church”), denoted as S′(ei); 2)
The second step feeds sequence S′(ei) into BERT and takes
the final state, denoted by C(ei), corresponding to “[CLS]” as
the intermediate vector representation of S(ei) [26]; 3) The
third step further adds an MLP layer over C(ei)to obtain the
final attribute embedding of ei. Formally, we present the above
three steps as follows.

S′(ei) = “[CLS]” || S(ei) (5)
C(ei) = BERT(S′(ei)) (6)
Ha(ei) = MLP(C(ei)) (7)

Remarks. As BERT uses a subword-based tokenization strat-
egy to deal with rare words, it may not work well for numeric
values [28]. There are two directions to address this problem:
1) handling the numeric values separately, and 2) exploring
other pre-trained models, e.g., ELMo [29]. [28] has reported
that ELMo has the best performance in capturing numeracy
among all pre-trained methods. We are very interested in
exploring this in the future.

Moreover, domain-specific terms may not be handled well
by BERT. This can be partially addressed by extending
pre-trained models with domain-specific vocabulary by pre-
training on the domain-specific corpus [30], [31]. We will
study this problem in the future work.

B. Relation Embedding Module

In relation embedding module, we use a GRU-based at-
tention mechanism [32] to model contribution of neighbors
and selectively aggregate this information. Intuitively, given
an entity ei, the contribution of its neighbor ej would de-
pend on other neighbors of ei. Alternative methods include
averaging the neighbor’s embeddings, pooling, and directly
using the attention mechanism. Compared to them, the Bi-
directional GRU (BiGRU) [33] model is able to capture
correlations among different neighbors of ei, thus it can model
different contributions of the same neighbor for different
entities according to the context information (the surrounding
neighbors). More specifically, the BiGRU model generates a
set of entity-specific neighbor embeddings, i.e., {ht}|nt=1. The

2132

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

correlations are captured by the reset gate and the update gate
of BiGRU, which are used to control how much information
should be dropped from previous hidden states and how much
information should be retained from current input. Further,
the attention mechanism uses the correlations to compute the
contributions and selectively aggregate the neighbor embed-
dings. Next, we introduce the BiGRU model and the attention
mechanism as follows.

1) Capturing Correlations among Neighbors with BiGRU:
Intuitively, we take all neighbors of entity ei as an input
sequence of our BiGRU model. Given entity ei, let xt denote
the t-th input embedding (the attribute embedding of ei’s t-th
neighbor) and let ht denote the output vector of the t-th hidden
unit. The reset gate rt drops the neighbor information which
is introduced previously but not important in determining the
correlations, i.e.,

rt = σ(Wrxt + Urht−1 + br) (8)

h̃t = φ(Wxt) + U(rt � ht−1 + bh) (9)

where W , U , and b are parameter matrices and vector h̃t is
the hidden state of t-th unit, σ is the sigmoid function, φ is the
hyperbolic tangent, and � denotes the Hadamard product 2.
Next, an update gate zt is introduced to include the important
features from the current input neighbor xt:

zt = σ(Wzxt + Uzht−1 + bz) (10)

ht = (1− zt)� ht−1 + zt � h̃t (11)

We adopt the bidirectional version of GRU model, in which
−→
ht

and
←−
ht are the t-th output for each direction. The final output

ht of t-th hidden unit is the sum of
−→
ht and

←−
ht .

2) Attention Mechanism: The attention mechanism enables
the model to exploit importance of each neighbor to extract the
most relevant information from the neighbors. The attention
mechanism first generates a global attention representation ĥ
for each entity and obtains the contribution of each neighbor
by a scoring function. Specifically, given entity ei and entity-
specific neighbor embeddings {ht}|nt=1, the global attention
representation is learned from the last output representation
of BiGRU model (i.e., hn), because the aggregated input
information containing in hn can help the model identify the
important parts. In our design, ĥ is obtained by sending hn
into an MLP layer:

ĥ = MLP(hn) (12)

Further, the model computes the contribution of neighbors by a
scoring function f(·, ·). The scoring function is used to capture
the similarity between the global attention representation ĥ
and each neighbor embedding ht. We use the inner product
function in our design. The contributions are denoted as:

wt = f(ht, ĥ) = hTt · ĥ (13)

αt =
exp(wt)∑n
i=1 exp(wi)

(14)

2https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

where αt weights the neighbors according to their contribu-
tions. Finally, our model generates the relation embedding for
entity ei as the weighted sum of its entity-specific neighbor
embedding ht:

Hr(ei) =
n∑

t=1

αt · ht (15)

C. Joint Entity Representation

Given an entity ei, the attribute embedding module and
the relation embedding module compute its attribute embed-
ding Ha(ei) and relation embedding Hr(ei), capturing the
information from attributes and neighbors respectively. To
jointly model the information from attributes and neighbors,
we compute a joint representation Hm(ei), which combines
Ha(ei) and Hr(ei) with an MLP layer:

Hm(ei) = MLP([Ha(ei);Hr(ei)]) (16)

where [;] represents the concatenation of vectors. As such, we
have three embeddings Ha(ei), Hr(ei), and Hm(ei), capturing
the attribute information, the neighbor information, and the
joint attribute and neighbor information, respectively. The
final entity embedding Hent(ei) is the concatenation of these
embeddings, which captures all three aspects of information:

Hent(ei) = [Hr(ei);Ha(ei);Hm(ei)] (17)

Therefore, based on the joint embeddings, the distance be-
tween entity embeddings naturally measures the semantic
relevance of neighbors, direct associations of attributes and
indirect associations of attributes and neighbors.

IV. IMPLEMENTATION

Given the rationales and the architecture of our proposed
SDEA framework presented previously, in this section, we
focus on the implementation details.

A. Model Training

A simple method to train our attribute embedding and
relation embedding modules is to connect these modules in
an end-to-end architecture and train them together. However,
considering the limitation of GPU memory and the running
efficiency, we separate the training of the attribute embed-
ding module in our implementation, because fine-tuning the
transformer model consumes much GPU memory. For ease of
presentation, we use H(·) and H ′(·) to represent embeddings
of entities from KG1 and KG2 respectively.

1) Pre-training the Attribute Embedding Module: The pre-
training procedure of attribute embedding module is shown in
Algorithm 2. The algorithm takes as input the entity sets E and
E′ of the two KGs (KG1 and KG1) with their corresponding
attribute triples, the training set L̂train, and validation set
L̂valid of aligned entities. The output of the algorithm is
a trained attribute embedding module, which is denoted by
AttrModule(·).

The pre-training procedure in Algorithm 2 consists of
max_epoch epochs, where each epoch has the following

2133

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Pre-training of attribute embedding mod-
ule

Input:
E, E′: two sets of entities to be aligned from two KGs.
L̂train, L̂valid: the training set and validation set.

1 for k in range(max_epoch) do
2 Ha ← calculate initial embedding Ha(ei) for each

entity ei ∈ E by using Ha(ei) = AttrModule(ei)
3 H ′

a ← calculate initial embedding H ′
a(e

′
j) for each

entity e′j ∈ E′ by using H ′
a(e

′
j) = AttrModule(e′j)

4 Ma
candidates = GenCandidates(Ha, H

′
a)

5 for (ei, e
′
i) ∈ L̂train do

6 e′′i ∈Ma
candidates(ei) ∧ e′′i 6= e′i

7 Ha(ei), H
′
a(e

′
i), H

′
a(e

′′
i)← AttrModule(ei/e

′
i/e

′′
i)

8 Lossi = MarginLoss(Ha(ei), H
′
a(e

′
i), H

′
a(e

′′
i))

9 Update parameters of AttrModule via
back-propagating Lossi

10 end
11 validate AttrModule using validation set L̂valid

12 end

three steps. The first step (Line 2-4) retrieves a set of can-
didates Ma

candidates(ei) from KG2, given each each entity ei
in KG1. To this end, it computes pairwise similarities for
pairs of entities across the two KGs on top of the initial
entity embeddings produced by AttrModule. The second
step (Line 5-10) updates parameters of neural networks using
the input training set L̂train. Specifically, for each entity
pair in training set (denoted as (ei, e

′
i)), we first randomly

select a negative sample e′′i , which is not matched with ei,
from candidate set Ma

candidates(ei) of ei. Then, we feed the
entities ei, e′i and e′′i into our attribute embedding module to
generate attribute embeddings Ha(ei), H ′a(e

′
i), and H ′a(e

′′
i)

respectively. These embeddings are then used to calculates
the loss, and a back propagation process is performed to
update parameters of the attribute embedding module based
on the loss. In particular, we use the following margin-based
ranking loss (Line 8), as this loss function has successful
practices in binary classification and is commonly adopted in
entity alignment approaches. Compared to other alternative
loss functions used in binary classification, such as cross-
entropy loss, margin-based ranking loss can make the distance
between embeddings of unmatching entities large and provide
better generalization ability.

L =
∑

ei,e′i,e
′′
i ∈D

max{0, ρ(Ha(ei), H
′
a(e
′
i))

− ρ(Ha(ei), H
′
a(e
′′
i)) + β}

(18)

where D is our training set with the generated negative
samples, ρ is the l2 distance function, and β > 0 is the margin
hyper-parameter used for separating positive and negative
pairs. At last, the third step is responsible for validating the
module using validation set L̂valid (Line 11). We omit the
details of this step since the validation process is similar to
the second (training) step.

2) Model Training with Pre-trained Attribute Embeddings:
The training procedure is shown in Algorithm 3. Similar to the

Algorithm 3: Model training with pre-trained attribute
embeddings

Input:
E, E′: two sets of entities to be aligned from two KGs.
L̂train, L̂valid: the training set and validation set.
Ha, H

′
a: the pre-trained attribute embeddings.

1 Mr
candidates = GenCandidates(Ha, H

′
a)

2 for k in range(max_epoch) do
3 for (ei, e

′
i) ∈ L̂train do

4 e′′i ∈Mr
candidates(ei) ∧ e′′i 6= e′i

5 Hr(ei), H
′
r(e

′
i), H

′
r(e

′′
i)← RelModule(ei/e

′
i/e

′′
i)

6 Hm(ei) = MLP([Ha(ei);Hr(ei)])
7 H ′

m(e′i) = MLP([H ′
a(e

′
i);H

′
r(e

′
i)])

8 H ′
m(e′′i) = MLP([H ′

a(e
′′
i);H

′
r(e

′′
i)])

9 Lossi = MarginLoss([Hr(ei);Hm(ei)],
[H ′

r(e
′
i);H

′
m(e′i)]), [H

′
r(e

′′
i);H

′
m(e′′i)])

10 Update parameters of RelModel and MLP layer via
back-propagating Lossi

11 end
12 validate the model with L̂valid

13 end

pre-training procedure, the algorithm also takes as input entity
sets E and E′ from the two KGs with their corresponding
triples, training set L̂train, validation set L̂valid. Besides, it
also considers a new input, namely the pre-trained attribute
embeddings Ha for E and H ′a for E′. Based on the pre-
trained entity embeddings, the algorithms first retrieves a fixed
number of candidates Mr

candidates(ei) from KG2 for each
entity ei in KG1 (Line 1). Then, for each pair of training
data (ei, e

′
i), it generates a negative sample in the same way

of the above pre-training procedure. Next, the algorithm trains
the models by generating the relation embeddings Hr(ei),
H ′r(e

′
i), and H ′r(e

′′
i) (Line 5), and the joint representations

Hm(ei), H ′m(e′i), and H ′m(e′′i) with MLP layers (Line 6-8),
and then updating the model parameters with the margin-
based ranking loss (Line 9-10). The loss is computed with
the concatenation of the relation embeddings and the joint
representations. Similarly as before, we validate the module
using validation set L̂valid (Line 12).

B. Entity Alignment

Entity alignment aims to find aligned entities between two
KGs. Similar to other approaches [10]–[13], [21], [23], [34],
we directly calculate the pairwise similarity score of entities
on top of their final embeddings (i.e., Hent(e) and H ′ent(e

′)
in Fig. 3) via the cosine similarity function. The rationale of
using the cosine similarity function is that there is a monotonic
relationship between Euclidean distance (the l2 distance used
in our loss function) and the cosine similarity when the norm
of the vector is normalized. Note that we do not assume that
every entity in KB1 must have (at most) a matching entity
in KB2. Thus, for each source entity in KG1, we retrieve a
list of target entities from KG2 with cosine similarity scores,
where high scores imply high matching probabilities.

2134

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I
STATISTICS OF BENCHMARKS

Datasets Entities Rel. Attr. Rel. triples Attr. Triples
DBP15K

ZH-EN ZH 19,388 1,701 7,780 70,414 379,684
EN 19,572 1,323 6,933 95,142 567,755

JA-EN JA 19,814 1,299 5,681 77,214 354,619
EN 19,780 1,153 5,850 93,484 497,230

FR-EN FR 19,661 903 4,431 105,998 528,665
EN 19,993 1,208 6,161 115,722 576,543

SRPRS

EN-FR EN 15,000 221 274 36,508 70,750
FR 15,000 177 393 33,532 56,344

EN-DE EN 15,000 222 275 38,363 62,715
DE 15,000 120 185 37,377 142,506

DBP-WD DBP 15,000 253 336 38,421 71,957
WD 15,000 144 412 40,159 136,315

DBP-YG DBP 15,000 223 300 33,748 69,355
YG 15,000 30 21 36,569 22,519

OpenEA

D_W_15K_V1 D 15,000 248 342 38,265 68,258
W 15,000 169 649 42,746 138,246

D_W_100K_V1 D 100,000 413 493 293,990 451,011
W 100,000 261 874 251,708 687,787

DBP (D), YG, WD (W) stand for DBpedia, YAGO, and Wikidata.

V. EXPERIMENTS

We conduct an extensive experimental study to evaluate our
model and compare with the state-of-the-art baselines. In this
section, we first present the experimental setup and then report
the results and analysis.

A. Experimental Setup

1) Datasets: We conduct experiments on two widely-used
benchmarks, DBP15K [10] and SRPRS [23], and two chal-
lenging datasets in OpenEA [8]. Table I provides more details
of these datasets, including number of entities, relations,
attributes, relation triples and attribute triples.

DBP15K [10] contains three multilingual datasets extracted
from DBpedia, including Chinese-English (ZH-EN), Japanese-
English (JA-EN), and Franch-English (FR-EN). Each dataset
contains 15,000 inter-language links (ground truth) for training
and testing. DBP15K has two versions, namely full version and
condensed version [10], where the condensed version samples
the relational triples with popular head and tail entities from
the full version. To be consistent with the existing studies [10],
[35], we use the condensed version to evaluate our proposal.

SRPRS [23] is a well-adopted benchmark for entity align-
ment, containing two multilingual datasets, EN-DE and EN-
FR, and two monolingual datasets, DBP-WD and DBP-YG.
More specifically, the multilingual datasets EN-DE and EN-
FR are extracted from the multilingual DBpedia, while the
monolingual datasets DBP-WD and DBP-YG are extracted
from DBpedia, Wikipedia, and YAGO. Consistent with [35],
we replace the entity identifiers in WD with entity names
retrieved from Wikidata. The original SRPRS benchmark [23]
has two versions, normal version and dense version. We follow
a recent benchmarking study work [35] to use the normal
version, as this version is closer to real-world knowledge
bases. In particular, SRPRS contains 15,000 pair of equivalent
entity links (ground truth) for training and testing. As shown

TABLE II
BASELINE METHODS COMPARISON BASED ON THE TECHNIQUES USED

Method Relational
Association

Topological
Connection

Long-term
Dependency

Attribute
Correlation Literal

MTransE [9] TransE
JAPE-Stru [10] TransE
JAPE [10] TransE Skip-gram
NAEA [11] TransE variant
BootEA [12] TransE variant
TransEdge [13] TransE variant
IPTransE [14] TransE PTransE
RSN4EA [23] RSNs
GCN [18] GCNs
GCN-Align [18] GCNs GCNs
MuGNN [21] GATs GATs
KECG [22] TransE GATs
HMAN [15] FNNs GCNs FNNs

RDGCN [19] head/tail+GATs GCNs+
Highway gates

Glove
(Entity Name)

HGCN [20] head/tail GCNs+
Highway gates

Glove
(Entity Name)

CEA [38] GCNs
Levenshtein+

fastTest/MUSE
(Entity Name)

BERT-INT [34] BERT-based
(Neighbor’s Name)

BERT-based
(Entity Name

+Attribute Value)

in Table I, compared to DBP15K, SRPRS is more sparse
(containing fewer relations).

OpenEA [8] is a newly proposed benchmark in 2020. It is
similar to SRPRS, containing two multilingual (EN-DE and
EN-FR) and two monolingual (D-W and D-Y) datasets with
sparse (V1) and condensed (V2) version. Differently, it also
provides a large version with 100K matching entities. Due to
its similarity with SRPRS, we only present the experimental
results on two datasets: D_W_15K_V1 and D_W_100K_V1,
which are more challenging for two reasons: 1) they are sparse
in relations, and 2) they contain limited information for entity
matching. In particular, they do not well match on entity
names, i.e., D (DBpedia) contains names (e.g., Poland), while
W (Wikidata) uses Wikidata IDs (e.g., Q36).

2) Evaluation Metrics: We use Hits@K (K=1, 10) and
mean reciprocal rank (MRR) as the evaluation metrics, which
are described as follows. (1) Hits@K (or H@K for short)
is defined as the proportion of source entities whose target
entities are in the top-K matching results returned by an
approach. The higher the Hits@K is, the better an approach is.
(2) MRR (MRR = 1

N

∑N
i=1

1
ranki

) is defined as, given a set
of source entities, the average of the reciprocal ranks of their
ground-truth target entities in their matching results returned
by an approach. Similar to Hits@K, the higher the MRR is,
the better an approach is.

3) Experimental Settings: For each dataset, we split the
ground truth links into training, validation, and test set with
ratio of 2:1:7. We implement our method with Pytorch [36]
and Transformers library [37]. In all experiments, we fix the
max length of BERT’s input sequence to be 128. The batch
size is 8 for the attribute embedding module and 256 for the
relation embedding module. The training process is terminated
when Hits@1 on the validation set does not increase for 5
consecutive times, and then it returns the checkpoint with the
best Hits@1 on the validation set.

4) Compared Methods: Zhao et al. [35] have conducted
a comprehensive experimental study on the state-of-the-art

2135

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

TABLE III
EXPERIMENTAL RESULTS ON DBP15K BENCHMARK

Method ZH-EN JA-EN FR-EN
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MTransE [9] 20.9 51.2 0.31 25.0 57.2 0.36 24.7 57.7 0.36
JAPE-Stru [10] 37.2 68.9 0.48 32.9 63.8 0.43 29.3 61.7 0.40
JAPE [10] 41.4 74.1 0.53 36.5 69.5 0.48 31.8 66.8 0.44
NAEA [11] 38.5 63.5 0.47 35.3 61.3 0.44 30.8 59.6 0.40
BootEA [12] 61.4 84.1 0.69 57.3 82.9 0.66 58.5 84.5 0.68
TransEdge [13] 75.3 92.4 0.81 74.6 92.4 0.81 77.0 94.2 0.83
IPTransE [14] 33.2 64.5 0.43 29.0 59.5 0.39 24.5 56.8 0.35
RSN4EA [23] 58.0 81.1 0.66 57.4 79.9 0.65 61.2 84.1 0.69
GCN [18] 39.8 72.0 0.51 40.0 72.9 0.51 38.9 74.9 0.51
GCN-Align [18] 43.4 76.2 0.55 42.7 76.2 0.54 41.1 77.2 0.53
MuGNN [21] 47.0 83.5 0.59 48.3 85.6 0.61 49.1 86.7 0.62
KECG [22] 47.7 83.6 0.60 49.2 84.4 0.61 48.5 84.9 0.61
HMAN [15] 56.1 85.9 0.67 55.7 86.0 0.67 55.0 87.6 0.66
RDGCN [19] 69.7 84.2 0.75 76.3 89.7 0.81 87.3 95.0 0.90
HGCN [20] 70.8 84.0 0.76 75.8 88.9 0.81 88.8 95.9 0.91
CEA (Emb) [38] 71.9 85.4 0.77 78.5 90.5 0.83 92.8 98.1 0.95
CEA [38] 78.7 86.3 97.2
BERT-INT [34] 81.4 83.7 0.82 80.6 83.5 0.82 98.7 99.2 0.99
SDEA 87.0 96.6 0.91 84.8 95.2 0.89 96.9 99.5 0.98
SDEA w/o rel. 84.8 94.9 0.89 79.0 90.2 0.83 96.4 99.3 0.98

methods (up to 2020) and reported the results on DBP15K and
SRPRS benchmarks. Thanks to this work, we can evaluate our
method comprehensively. In addition, we include a recent solu-
tion, namely BERT-INT [34], which also uses language model
and achieves good performance on DBP15K. In Table II,
we summarized the methods by considering the techniques
used from different aspects, such as relational association,
topological connection, etc. Note that since entity descriptions
are not available in all benchmarks we used, HMAN only
leverages GCNs and FNNs to capture topological connections,
relational associations, and attribute correlations (same as the
experiments in [35]), and BERT-INT uses entity names as an
alternative. Further, CEA performs a stable matching algorithm
for 1-1 alignment after embedding. For a fair comparison, we
also evaluate the embedding only version of CEA, marked as
CEA (Emb) in the tables.

B. Experimental Results

This section presents the experimental results. We first com-
pare the overall performance of our method and the baseline
solutions in Section V-B1. Then, we report how our method
performs on handling long-tail entities in Section V-B2. Fi-
nally, we provide an ablation study on the two main com-
ponents, attribute embedding and relation embedding, of our
method in Section V-B3.

1) Overall Results: Tables III, IV, and V report the overall
results of our method (SDEA) with 17 baselines. In sum-
mary, our method achieves better or comparable performance
comparing to the state-of-the-art baselines on DBP15K and
SRPRS, and significantly outperforms them on the challenging
datasets (i.e., D_W_15K_V1 and D_W_100K_V1). Next, we
analyze the results of baselines by examining the techniques
as summarized in Table II.

The first group are TransE-based methods [9]–[13]. They
learn entity and relation embeddings by exploiting relational
association from relation triples. MTransE, JAPE-Stru (the

structured-only variant of JAPE), and NAEA directly apply
TransE to exploit relational association between entities. Due
to the limitation of TransE on capturing 1-N, N-1, and N-
N relations between entities (e.g., an entity may have same
relation with many entities), these methods only achieve
inferior performance. In particular, we can see that JAPE-
Stru and NAEA outperform MTransE on all the datasets. The
reason is that JAPE-Stru and NAEA utilize the negative sam-
pling technique in the training process while MTransE does
not. The experimental results show that negative samples are
effective in distinguishing the relations between entities [10].
Notice that the methods BootEA and TransEdge achieve better
performance than other TransE-based approaches, which can
be partially attributed to the semi-supervised learning strategy
they used.

The second group captures the long-term dependencies from
paths, which can also handle the alignment of long-tail entities
to a certain extent. However, IPTransE can only model short
distance paths while modeling long distance paths in RSN4EA
requires random sampling of the path around the entity. Due
to these reasons, they can not solve the problem studied in
this paper fundamentally.

The methods in the third group are mainly based on graph
neural networks. GCN is a structured-only variant of GCN-
Align, which only captures the topological connections in
KG using GCNs [16]. Without considering relation types
of edges, this method has limitations to achieve satisfactory
results on both benchmarks. Moreover, the experimental re-
sults also show that capturing the correlation of relations can
not bring competitive performance for entity alignment (e.g.,
GCN-Align, HMAN). MuGNN and KECG use GATs [17]
to identify the contribution of neighbors, so as to capture
relational associations by using GATs and TransE respectively.
They achieve better performance than the above methods on
the dense datasets. HMAN exploits multi-aspects information
(please refer to Fig. 1) in KG. Although these benchmarks
do not contain entity description, it still achieves superior
performance than previous ones.

Compare to the results in Table III, the performance of
aforementioned methods degrades on Table IV, which shows
the results of the real-world datasets with sparse relations
between entities. For example, the performance of MuGNN
has a cliff-like decline. The main reason is that cross-KG
attention in MuGNN relies on the similarity between the
relations across two KGs to compute the weight of GATs.
This mechanism would be heavily affected when the relations
between two sparse KGs have high heterogeneity.

The fourth group of methods take into account the lit-
erals, and further improve their overall performance. We
notice that CEA and BERT-INT have better performance than
RDGCN and HGCN on DBP15K and SRPRS (Tables III
and IV). Specifically, CEA use existing techniques (GCNs,
fastText [39]/MUSE [40], and Levenshtein distance [41]) to
get structural, semantic, and string information from graph
structures and entity names, which yields inferior performance
on Hits@K (K=1, 10) and MRR comparing to BERT-INT and

2136

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
EXPERIMENTAL RESULTS ON SRPRS BENCHMARK

Method EN-FR EN-DE DBP-WD DBP-YG
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MTransE [9] 21.3 44.7 0.29 10.7 24.8 0.16 18.8 38.2 0.26 19.6 40.1 0.27
JAPE-Stru [10] 24.1 53.3 0.34 30.2 57.8 0.40 21.0 48.5 0.30 21.5 51.6 0.32
JAPE [10] 24.1 54.4 0.34 26.8 54.7 0.36 21.2 50.2 0.31 19.3 50.0 0.30
NAEA [11] 17.7 41.6 0.26 30.7 53.5 0.39 18.2 42.9 0.26 19.5 45.1 0.28
BootEA [12] 36.5 64.9 0.46 50.3 73.2 0.58 38.4 66.7 0.48 38.1 65.1 0.47
TransEdge [13] 40.0 67.5 0.49 55.6 75.3 0.63 46.1 73.8 0.56 44.3 69.9 0.53
IPTransE [14] 12.4 30.1 0.18 13.5 31.6 0.20 10.1 26.2 0.16 10.3 26.0 0.16
RSN4EA [23] 35.0 63.6 0.44 48.4 72.9 0.57 39.1 66.3 0.48 39.3 66.5 0.49
GCN [18] 24.3 52.2 0.34 38.5 60.0 0.46 29.1 55.6 0.38 31.9 58.6 0.41
GCN-Align [18] 29.6 59.2 0.40 42.8 66.2 0.51 32.7 61.1 0.42 34.7 64.0 0.45
MuGNN [21] 13.1 34.2 0.20 24.5 43.1 0.31 15.1 36.6 0.22 17.5 38.1 0.24
KECG [22] 29.8 61.6 0.40 44.4 70.7 0.54 32.3 64.6 0.43 35.0 65.1 0.45
HMAN [15] 40.0 70.5 0.50 52.8 77.8 0.62 43.3 74.4 0.54 46.1 76.5 0.56
RDGCN [19] 67.2 76.7 0.71 77.9 88.6 0.82 97.4 99.4 0.98 99.0 99.7 0.99
HGCN [20] 67.0 77.0 0.71 76.3 86.3 0.80 98.9 99.9 0.99 99.1 99.7 0.99
CEA (Emb) [38] 93.3 97.4 0.95 94.5 98.0 0.96 99.9 100.0 1.00 99.9 100.0 1.00
CEA [38] 96.2 97.1 100.0 100.0
BERT-INT [34] 97.1 97.5 0.97 98.6 98.8 0.99 99.6 99.7 1.00 100.0 100.0 1.00
SDEA 96.6 98.6 0.97 96.8 98.9 0.98 98.0 99.6 0.99 99.9 100.0 1.00
SDEA w/o rel. 95.6 97.7 0.96 95.7 98.1 0.97 97.9 99.5 0.99 99.9 100.0 1.00

TABLE V
EXPERIMENTAL RESULTS ON OPENEA BENCHMARK

Method D_W_15K_V1 D_W_100K_V1
H@1 H@10 MRR H@1 H@10 MRR

CEA (Emb) [38] 14.9 42.9 0.24 25.1 50.9 0.34
CEA [38] 19.0 44.5
BERT-INT [34] 0.6 0.6 0.01 0.0 0.1 0.00
SDEA 65.1 77.2 0.69 57.1 64.5 0.60
SDEA w/o rel. 58.2 68.1 0.62 52.0 60.2 0.55

ours on most datasets (except DBP-WD in Table IV). Further,
it uses a classical stable matching algorithm [42] to obtain
the best matching entity, but it only works for finding 1-1
matching. As a result, CEA can only get Hits@1 score. In fact,
the stable matching algorithm can be applied to all embedding
methods to boost the performance of 1-1 alignment. For
instance, we improve Hits@1 on JA-EN (in DBP15K) from
84.8% to 89.8% when applying the stable matching algorithm,
which outperforms CEA (86.3%) by 3.5%. For BERT-INT,
it has a strong dependency on entity name (summarized in
Table II). Since FR-EN (in DBP15K) and all datasets in
SRPRS include well-aligned entity names (which are extracted
from Wikipedia page and literally similar), it works well on
these datasets as expected. As a comparison, although our
method dose not have a strong dependency on entity name,
we still achieve comparable performance with BERT-INT.

Table V shows the experimental results on the two challeng-
ing datasets, D_W_15K_V1 and D_W_100K_V1. BERT-INT,
which relies on entity names, does not even work. This is
because the two KGs on the datasets do not contain literally
matched entity names (name vs. Wikidata ID). Moreover,
SDEA outperforms CEA with a large margin, e.g., 46.1% and
12.6% of Hits@1 respectively, which is mainly attributed to
the design of identifying various contributions of neighbors
and handling alignment of long-tail entities.

TABLE VI
PROPORTION OF ENTITY DEGREES WITHIN THE RANGES

Dataset 1∼3 1∼5 1∼10

DBP15K
ZH-EN 30.0% 46.9% 78.5%
JA-EN 28.8% 44.0% 76.8%
FR-EN 23.1% 33.4% 63.6%

SRPRS

EN-FR 69.9% 81.5% 92.5%
EN-DE 65.4% 81.6% 94.7%

DBP-WD 65.7% 78.9% 90.8%
DBP-YG 69.8% 82.0% 94.7%

OpenEA D_W_15K_V1 52.8% 73.7% 91.2%
D_W_100K_V1 54.7% 74.1% 91.4%

Error analysis. We conduct a detailed analysis on the result
of challenging datasets. Now, we take D_W_15K_V1 as an
example to illustrate our findings.

First, the dataset is very challenging, i.e., many entities
have very limited information. From our observation, KGs in
D_W_15K_V1 are very sparse in relations. According to our
statistics, 99.6% of the to-be-aligned entities in the test set
have no matching neighbors. Further, since entity names in
W are Wikidata IDs, they do not provide useful information
for the alignment. It is hard to align entities with such limited
information.

Second, the transformer-based pre-trained language model,
i.e., BERT, which we used to get initial embeddings of entities,
is insufficient to handle numeric values (as discussed in Sec-
tion III-A). According to our statistics, about 40% of attribute
values in this dataset are numerical attributes, including 9%
identifiers, 23% integers and floats, and 8% dates. We will
further explore this problem in the future.

2) Evaluation on Handling Long-tail Entities: This section
provides an in-depth analysis on the performance of our
method in handling long-tail entities. Table VI presents the
proportion of entities with degrees in ranges from 1∼3, 1∼5,
and 1∼10. We can see that the datasets of SRPRS and OpenEA

2137

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

contain more than 50% of entities with degrees less than or
equal to 3, and less than 10% of entities with degrees greater
than 10. In contrast, the datasets of DBP15K contain less than
30% of entities with degrees less than or equal to 3, and more
than 20% entities with degrees greater than 10. This clearly
show that the datasets in SRPRS and OpenEA have much
more long-tail entities than those in DBP15K. As shown in the
results on DBP15K and SRPRS (in Table III and Table IV),
the first three groups of baseline methods achieve inferior
performance on the datasets in SRPRS. This result implies that
the methods taking graph as main features have limitations to
handle the alignment of long-tail entities. Compared with these
methods, SDEA shows its ability to deal with long-tail entities.
It achieves more than 96% Hits@1 score on all datasets
of SRPRS and significantly outperforms the best results of
the first three groups with 51.3% improvement on average.
Further, we show the generality of SDEA to handle long-tail
entities in D_W_15K_V1 and D_W_100K_V1, which contain
no well-matched entity names (see Table V).

3) Ablation Study: This section presents an ablation study
to analyze the effectiveness of attribute embedding and relation
embedding modules. The results are reported in the last two
rows of Tables III, IV, and V, where SDEA is the full
version of our method containing both modules and SDEA
w/o rel. eliminates the relation embedding. The results clearly
show the effectiveness of relation embedding, which identi-
fies the contribution of neighbors and captures the implicit
associations between entities. It is also worth noting that
without relation embedding, the results of SDEA w/o rel. still
achieve comparable performance on DBP15K and SRPRS,
and significantly outperforms baselines on D_W_15K_V1 and
D_W_100K_V1. This demonstrates the importance of explicit
semantic associations in entity alignment. After adding the
relational embedding, the performance of SDEA is further
boosted on almost all datasets. One exception is the DBP-
YG dataset in DBP15K, where SDEA w/o rel. has already
achieved a very high Hit@1 score of 99%.

VI. RELATED WORK

Entity alignment has been extensively studied in the recent
decades, and the existing studies can be broadly divided
into the following categories: rule-based approaches [43],
crowdsourcing-based approaches [44], [45], machine learn-
ing (ML) approaches [46], and deep learning (DL) ap-
proaches [15], [23], [34]. Among these approaches, not sur-
prisingly, DL-based approaches have achieved the state-of-the-
art performance. Thus, we mainly focus on summarizing the
DL approaches in this section.

Most DL-based approaches for entity alignment leverage
embedding-based techniques. Some early studies [9], [10]
use the original TransE [47] to train KG embeddings, which
may not perform well when capturing 1-N, N-1 and N-N
relations between entities. Thus, some approaches propose
to consider the structure of KGs. GCN-Align [18] employs
GCN-based [16] techniques. The basic idea is to generate
entity embeddings based on topological structure of entities

in KGs by utilizing graph neural networks. RSN4EA [23]
studies the problem of handling the alignment of long-tail
entities and proposes a path-based embedding approach to ad-
dress the long-distance transmission of alignment information.
Moreover, some researchers consider different contributions of
neighbors to entities to be aligned, and devise attention-based
mechanisms on TransE-based model [11] or with GATs [21],
[22].

Some recent studies further consider textual information
of entities to improve the performance, e.g., exploiting se-
mantics from entity names or descriptions. To this end, they
embed names/descriptions separately from structural embed-
dings [15], [34], [38] or use entity names/descriptions as initial
input of GCNs [19], [20], [25]. BERT-INT [34] explores to use
attribute values, which provide rich semantic information that
are not included in graph structure. It encodes attribute values
by BERT and calculates the pairwise attribute similarities,
which only captures the direct semantic association between
attribute values. CEA [38] focuses more on the alignment algo-
rithm and performs a classical stable matching algorithm [42]
to achieve better alignment. However, this method works only
for 1-1 matching.

Compared with these approaches, our work aims to fully ex-
ploit the inherent semantics of entities from all attribute values.
We use the conceptual granularity and the semantic relevance
of neighbors to identify the contribution, which is more reli-
able than those solely relying on graph structures. Further, we
take the advantage of direct (between attributes) and indirect
(between attributes and neighbors) semantic associations to
build bridges between entities, which can effectively solve the
problem of aligning long-tail entities.

Nowadays, some new directions have emerged in the re-
search of entity alignment, which motivates our future work.
Regarding the practical issues present in dealing with real-
world knowledge bases, researchers propose completely un-
supervised solutions [48]–[50], dedicate to improving the
speed [51], and propose dynamic entity alignment solu-
tions [52]. Also, some studies jointly learn entity and relation
embeddings [53]–[55], and incorporate new types of informa-
tion in KGs, such as images [56].

VII. CONCLUSION

In this paper, we discuss two design considerations moti-
vated by a careful analysis on real-word KGs. We propose
SDEA – a semantics-driven entity embedding method for
effective entity alignment, which identifies the contribution of
neighbors, handling the alignment of long-tail entities by joint
learning entity representation from three aspects: the semantic
relevance of neighbors, the direct associations of attributes,
and the indirect associations of attributes and neighbors. We
conduct extensive experiments to evaluate our approach. The
experimental results show the superior performance of SDEA
on widely-used benchmark datasets. We also conduct an
ablation study to analyze each component of SDEA, which
validates the rationality and effectiveness of our design.

2138

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] W. Yih, M. Chang, X. He, and J. Gao, “Semantic parsing via staged
query graph generation: Question answering with knowledge base,” in
ACL. The Association for Computer Linguistics, 2015, pp. 1321–1331.

[2] N. Abdullah and R. Ibrahim, “Knowledge retrieval in lexical ontology-
based semantic web search engine,” in ICUIMC. ACM, 2013, p. 8.

[3] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Ma, “Collaborative
knowledge base embedding for recommender systems,” in KDD. ACM,
2016, pp. 353–362.

[4] T. Rebele, F. M. Suchanek, J. Hoffart, J. Biega, E. Kuzey, and
G. Weikum, “YAGO: A multilingual knowledge base from wikipedia,
wordnet, and geonames,” in International Semantic Web Conference, ser.
Lecture Notes in Computer Science, vol. 9982, 2016, pp. 177–185.

[5] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“Dbpedia - A large-scale, multilingual knowledge base extracted from
wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167–195, 2015.

[6] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in SIGMOD Conference. ACM, 2008, pp. 1247–1250.

[7] “Imdb.” [Online]. Available: http://www.imdb.com
[8] Z. Sun, Q. Zhang, W. Hu, C. Wang, M. Chen, F. Akrami, and C. Li, “A

benchmarking study of embedding-based entity alignment for knowledge
graphs,” Proc. VLDB Endow., vol. 13, no. 11, pp. 2326–2340, 2020.

[9] M. Chen, Y. Tian, M. Yang, and C. Zaniolo, “Multilingual knowledge
graph embeddings for cross-lingual knowledge alignment,” in IJCAI.
ijcai.org, 2017, pp. 1511–1517.

[10] Z. Sun, W. Hu, and C. Li, “Cross-lingual entity alignment via joint
attribute-preserving embedding,” in International Semantic Web Confer-
ence, ser. Lecture Notes in Computer Science, vol. 10587. Springer,
2017, pp. 628–644.

[11] Q. Zhu, X. Zhou, J. Wu, J. Tan, and L. Guo, “Neighborhood-aware
attentional representation for multilingual knowledge graphs,” in IJCAI.
ijcai.org, 2019, pp. 1943–1949.

[12] Z. Sun, W. Hu, Q. Zhang, and Y. Qu, “Bootstrapping entity alignment
with knowledge graph embedding,” in IJCAI. ijcai.org, 2018, pp. 4396–
4402.

[13] Z. Sun, J. Huang, W. Hu, M. Chen, L. Guo, and Y. Qu, “Transedge:
Translating relation-contextualized embeddings for knowledge graphs,”
in ISWC, ser. Lecture Notes in Computer Science, vol. 11778. Springer,
2019, pp. 612–629.

[14] H. Zhu, R. Xie, Z. Liu, and M. Sun, “Iterative entity alignment via joint
knowledge embeddings,” in IJCAI. ijcai.org, 2017, pp. 4258–4264.

[15] H. Yang, Y. Zou, P. Shi, W. Lu, J. Lin, and X. Sun, “Aligning cross-
lingual entities with multi-aspect information,” in EMNLP/IJCNLP.
Association for Computational Linguistics, 2019, pp. 4430–4440.

[16] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR (Poster). OpenReview.net, 2017.

[17] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Ben-
gio, “Graph attention networks,” in ICLR (Poster). OpenReview.net,
2018.

[18] Z. Wang, Q. Lv, X. Lan, and Y. Zhang, “Cross-lingual knowledge graph
alignment via graph convolutional networks,” in EMNLP. Association
for Computational Linguistics, 2018, pp. 349–357.

[19] Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao, “Relation-
aware entity alignment for heterogeneous knowledge graphs,” in IJCAI.
ijcai.org, 2019, pp. 5278–5284.

[20] Y. Wu, X. Liu, Y. Feng, Z. Wang, and D. Zhao, “Jointly learning entity
and relation representations for entity alignment,” in EMNLP/IJCNLP.
Association for Computational Linguistics, 2019, pp. 240–249.

[21] Y. Cao, Z. Liu, C. Li, Z. Liu, J. Li, and T. Chua, “Multi-channel
graph neural network for entity alignment,” in ACL. Association for
Computational Linguistics, 2019, pp. 1452–1461.

[22] C. Li, Y. Cao, L. Hou, J. Shi, J. Li, and T. Chua, “Semi-supervised
entity alignment via joint knowledge embedding model and cross-
graph model,” in EMNLP/IJCNLP. Association for Computational
Linguistics, 2019, pp. 2723–2732.

[23] L. Guo, Z. Sun, and W. Hu, “Learning to exploit long-term relational
dependencies in knowledge graphs,” in ICML, ser. Proceedings of
Machine Learning Research, vol. 97. PMLR, 2019, pp. 2505–2514.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR (Workshop Poster), 2013.

[25] K. Xu, L. Wang, M. Yu, Y. Feng, Y. Song, Z. Wang, and D. Yu, “Cross-
lingual knowledge graph alignment via graph matching neural network,”
in ACL. Association for Computational Linguistics, 2019, pp. 3156–
3161.

[26] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT. Association for Computational Linguistics, 2019, pp. 4171–4186.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[28] E. Wallace, Y. Wang, S. Li, S. Singh, and M. Gardner, “Do NLP models
know numbers? probing numeracy in embeddings,” in EMNLP/IJCNLP
(1). Association for Computational Linguistics, 2019, pp. 5306–5314.

[29] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in NAACL-
HLT. Association for Computational Linguistics, 2018, pp. 2227–2237.

[30] W. Tai, H. T. Kung, X. Dong, M. Z. Comiter, and C. Kuo, “exbert:
Extending pre-trained models with domain-specific vocabulary under
constrained training resources,” in EMNLP (Findings), ser. Findings of
ACL, vol. EMNLP 2020. Association for Computational Linguistics,
2020, pp. 1433–1439.

[31] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang,
“Biobert: a pre-trained biomedical language representation model for
biomedical text mining,” Bioinform., vol. 36, no. 4, pp. 1234–1240,
2020.

[32] K. Cho, A. C. Courville, and Y. Bengio, “Describing multimedia content
using attention-based encoder-decoder networks,” IEEE Trans. Multim.,
vol. 17, no. 11, pp. 1875–1886, 2015.

[33] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” pp. 1724–
1734, 2014.

[34] X. Tang, J. Zhang, B. Chen, Y. Yang, H. Chen, and C. Li, “BERT-INT: A
bert-based interaction model for knowledge graph alignment,” in IJCAI.
ijcai.org, 2020, pp. 3174–3180.

[35] X. Zhao, W. Zeng, J. Tang, W. Wang, and F. Suchanek, “An experimental
study of state-of-the-art entity alignment approaches,” IEEE Transac-
tions on Knowledge & Data Engineering, 2020.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in NeurIPS, 2019, pp. 8024–8035.

[37] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art
natural language processing,” in EMNLP (Demos). Association for
Computational Linguistics, 2020, pp. 38–45.

[38] W. Zeng, X. Zhao, J. Tang, and X. Lin, “Collective entity alignment via
adaptive features,” in ICDE. IEEE, 2020, pp. 1870–1873.

[39] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, 2017.

[40] G. Lample, A. Conneau, M. Ranzato, L. Denoyer, and H. Jégou, “Word
translation without parallel data,” in ICLR (Poster). OpenReview.net,
2018.

[41] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.
Soviet Union, 1966, pp. 707–710.

[42] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[43] R. Singh, V. V. Meduri, A. K. Elmagarmid, S. Madden, P. Papotti,
J. Quiané-Ruiz, A. Solar-Lezama, and N. Tang, “Synthesizing entity
matching rules by examples,” Proc. VLDB Endow., vol. 11, no. 2, pp.
189–202, 2017.

[44] R. Meng, L. Chen, Y. Tong, and C. J. Zhang, “Knowledge base
semantic integration using crowdsourcing,” IEEE Trans. Knowl. Data
Eng., vol. 29, no. 5, pp. 1087–1100, 2017.

[45] Y. Zhuang, G. Li, Z. Zhong, and J. Feng, “Hike: A hybrid human-
machine method for entity alignment in large-scale knowledge bases,”
in CIKM. ACM, 2017, pp. 1917–1926.

2139

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

[46] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard,
H. Li, F. Panahi, H. Zhang, J. F. Naughton, S. Prasad, G. Krishnan,
R. Deep, and V. Raghavendra, “Magellan: Toward building entity
matching management systems,” Proc. VLDB Endow., vol. 9, no. 12,
pp. 1197–1208, 2016.

[47] A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in NIPS,
2013, pp. 2787–2795.

[48] Z. Qi, Z. Zhang, J. Chen, X. Chen, Y. Xiang, N. Zhang, and Y. Zheng,
“Unsupervised knowledge graph alignment by probabilistic reasoning
and semantic embedding,” in IJCAI. ijcai.org, 2021, pp. 2019–2025.

[49] W. Zeng, X. Zhao, J. Tang, and C. Fan, “Reinforced active entity
alignment,” in CIKM. ACM, 2021, pp. 2477–2486.

[50] X. Mao, W. Wang, Y. Wu, and M. Lan, “From alignment to assign-
ment: Frustratingly simple unsupervised entity alignment,” in EMNLP.
Association for Computational Linguistics, 2021, pp. 2843–2853.

[51] ——, “Boosting the speed of entity alignment 10 ×: Dual attention
matching network with normalized hard sample mining,” in WWW.
ACM / IW3C2, 2021, pp. 821–832.

[52] Y. Yan, L. Liu, Y. Ban, B. Jing, and H. Tong, “Dynamic knowledge
graph alignment,” in AAAI. AAAI Press, 2021, pp. 4564–4572.

[53] J. Yang, D. Wang, W. Zhou, W. Qian, X. Wang, J. Han, and S. Hu,
“Entity and relation matching consensus for entity alignment,” in CIKM.
ACM, 2021, pp. 2331–2341.

[54] X. Mao, W. Wang, Y. Wu, and M. Lan, “Are negative samples necessary
in entity alignment?: An approach with high performance, scalability and
robustness,” in CIKM. ACM, 2021, pp. 1263–1273.

[55] Y. Zhu, H. Liu, Z. Wu, and Y. Du, “Relation-aware neighborhood
matching model for entity alignment,” in AAAI. AAAI Press, 2021,
pp. 4749–4756.

[56] F. Liu, M. Chen, D. Roth, and N. Collier, “Visual pivoting for (unsuper-
vised) entity alignment,” in AAAI. AAAI Press, 2021, pp. 4257–4266.

2140

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on November 27,2022 at 17:27:54 UTC from IEEE Xplore. Restrictions apply.

